Collision between two moving objects (one with a non-known trajectory)?

AI Thread Summary
The discussion focuses on calculating the collision point between two moving objects, A and B, where A's trajectory is known, but B's direction is variable. The initial approach involves calculating the distance between A and B, determining the time to collision through iterative distance adjustments, and refining the estimate until it converges on a collision point. The user expresses dissatisfaction with the complexity of their method and seeks a more precise solution, potentially using the law of sines to simplify the calculations. They also consider the practical implications of their findings regarding the relationship between the objects' velocities and the time to collision. Overall, the conversation highlights the challenges of accurately predicting collisions in dynamic systems.
Iximeow
Messages
2
Reaction score
0
Alright, I've been working on this on my spare time for the past few weeks, and have a solution that ~works~, but I'm not happy with at all.

The general idea is to have two objects, A and B, where A's velocity and position are known, B's position and speed are known, but the direction B travels in can vary. I want to find where and when the two objects will collide, before even considering if it can happen at all.

Going to type out my math as it's simpler than just explaining it all in Engrish.

Ax, Bx = A's x-position, B's x-position
Ay, By = similarly, A's y-position, B's y-position
Avx, Avy = A's x-velocity, y-velocity

||B|| = B's speed

My solution thus far has been to find the distance from B to A, D1: sqrt({Bx-Ax}^2+{By-Ay}^2)

Then taking ||B||, and dividing D1 by it, giving T1 = D1/||B||

Then finding the distance from B to A(T1), D2: sqrt({Bx-Ax-Avx*T1}^2+{By-Ay-Avy*T1}^2)

Again, distance divided by ||B||, gives a better distance to correct for: T2 = D2/||B||

Then finding D3: sqrt({Bx-Ax-Avx*T2}^2+{By-Ay-Avy*T2}^2)

etc etc continuing on until Tn gets sufficiently small that I don't need to get closer, then having Tn and A(Tn), knowing that A(Tn) is close enough to the collision point I'm looking for. Initially, before I did the math, I was hoping to get something that I could use a limit for as n -> infinity, and get a precise answer, but from the way the math expands.. I'm pretty sure I can't do that?

If anyone knows what I may or may not be doing wrong, or a better way of finding this, I'd love you forever? :D
 
Physics news on Phys.org
... Don't mind me; reworking an idea I had a while back to use the law of sines gave a good answer.

Setting up a triangle with A and B's position as vertices, the collision point C as the third vertex, then knowing that AC = Bv*t, BC = Av*t, and easily finding the angle by A, and using the law of sines to know sin(A)/(Bv*t) = sin(B)/(Av*t). The t drops out, and then the angle by B is simple to find, which makes the problem into finding the intersection of two lines, and a bit more simple math to find how long it takes for one of the two objects to get to C.

Yay, precise answers. Now just wondering if AB/t has any real-world meaning or use.. hmm...
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top