Color of Deep Space: Distribution of Light Wavelengths

Click For Summary
SUMMARY

The discussion focuses on the spectral distribution of light wavelengths received by a stationary observer in an expanding Friedmann-Lemaître-Robertson-Walker (FLRW) universe. It highlights the relationship between emitted light wavelengths and their observed wavelengths due to cosmic expansion, utilizing the Robertson-Walker metric and the cosmological scale factor. Key equations include the apparent luminosity formula and the relationship between emitted and observed wavelengths, demonstrating how the expansion of space leads to a "blurred" distribution of frequencies. The analysis reveals that in a deSitter space, frequencies are uniformly distributed, while in a dust universe, the frequency distribution follows a specific power law.

PREREQUISITES
  • Understanding of Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology
  • Familiarity with the Robertson-Walker metric
  • Knowledge of cosmological scale factors and their implications
  • Basic grasp of light wavelength and frequency relationships in physics
NEXT STEPS
  • Research the implications of the Robertson-Walker metric in cosmology
  • Study the effects of cosmic expansion on light wavelengths in detail
  • Explore the derivation of spectral distributions in various cosmological models
  • Investigate the relationship between luminosity and distance in cosmological contexts
USEFUL FOR

Astronomers, physicists, and cosmologists interested in the effects of cosmic expansion on light, as well as students and researchers studying general relativity and cosmological models.

Barnak
Messages
62
Reaction score
0
I'm looking for the distribution of all wavelengths (or frequencies) of light that a stationary observer would receive at his location (at ##r = 0## and time ##t_0##), from all light sources emitting a single wavelength ##\lambda_{\text{e}}## (or angular frequency ##\omega_{\text{e}}##). The light sources are uniformly distributed in a general expanding FLRW universe, and comoving with the cosmic fluid. The spectral distribution of frequencies would tell something about the "color of deep space" (which is dark micro-waves "reddish" in our universe).

Because of the expansion of space with time, the light received by the observer will not have a single wavelength, it will have a blur instead (i.e. a dispersion). What is the distribution of wavelengths ?

More specifically, consider a universe with the following standard Robertson-Walker metric :
$$\tag{1}
ds^2 = dt^2 - a^2(t)\Big( \, \frac{1}{1 - k \, r^2} \; dr^2 + r^2 \, (d\vartheta^2 + \sin^2 {\vartheta} \; d\varphi^2) \Big),
$$
where ##k = -1, \, 0, \, 1##, and ##a(t)## is the cosmological scale factor (arbitrary function). The apparent luminosity at an observer's location, at time ##t_0##, of a punctual light source of proper absolute power ##\mathcal{P}##, located at coordinate ##r_{\text{e}}## and emitting light at time ##t_{\text{e}}##, is defined as the emitted energy per unit time per unit area (this is in Weinberg's book) :
$$\tag{2}
I = \frac{\mathcal{P} \, a^2(t_{\text{e}})}{4 \pi \, a^4(t_0) \, r^2}.
$$
The sources density (number of stars per unit volume) is
$$\tag{3}
n(t) = \frac{a^3(t_0)}{a^3(t)} \; n_0,
$$
and the volume of a spherical shell of radius ##r_{\text{e}}## is
$$\tag{4}
d\mathcal{V} = 4 \pi \, a^3(t) \frac{r_{\text{e}}^2}{\sqrt{1 - k \, r_{\text{e}}^2}} \; dr_{\text{e}}.
$$
Thus, the total luminosity at the observer's location at time ##t_0##, of all the sources is the following (using metric (1) to change the variable of integration. We assume that ##\mathcal{P}## and ##n_0## are constants) :
$$\tag{5}
\mathcal{I}(t_0) = \int_{\mathcal{V}} I \, n \; d\mathcal{V} = \mathcal{P} \, n_0 \int_{t_{\text{min}}}^{t_0} \frac{a(t_{\text{e}})}{a(t_0)} \; dt_{\text{e}}.
$$
Usually ##t_{\text{min}} = 0## (Big Bang) or ##t_{\text{min}} = -\, \infty## in some universe models.

Now, the light's wavelength is a fixed constant at emission time : ##\lambda_{\text{e}}## (at time ##t_{\text{e}}##), and stretches to ##\lambda## at time ##t_0## during propagation to the observer :
$$\tag{6}
\frac{\lambda}{\lambda_{\text{e}}} = \frac{a(t_0)}{a(t_{\text{e}})}.
$$
The differential of this equation is
$$\tag{8}
d\lambda = -\: \frac{a(t_0)}{a(t_{\text{e}})} \; H(t_{\text{e}}) \, \lambda_{\text{e}} \; dt_{\text{e}} = -\; \lambda \, H(t_{\text{e}}) \, dt_{\text{e}}.
$$
Substituting this into (5) above gives (changing to angular frequencies) :
$$\tag{9}
\mathcal{I}(t_0) = \mathcal{P} \, n_0 \int \frac{\lambda_{\text{e}}}{H(t_{\text{e}}) \, \lambda^2} \; d\lambda \quad \Rightarrow \quad \frac{\mathcal{P} \, n_0}{\omega_{\text{e}}} \int_0^{\omega_{\text{e}}} \frac{1}{H(t_{\text{e}})} \; d\omega.
$$
Now, ##H(t_{\text{e}}) \equiv \frac{\dot{a}}{a}## should be expressed as a function of ##\lambda## or the angular frequency ##\omega \equiv 2 \pi / \lambda##. This way, we can get the spectral distribution ##f(\omega)## of light, which is now "blurred" by the expansion of space.

This is interesting since for a deSitter space, we have a constant expansion rate ; ##H = \textit{cste}## (when the scale factor is ##a(t) \propto e^{t \,/\, \ell_{\Lambda}}##), so the frequencies received by the observer are all uniformly distributed on the intervall ##0 \le \omega \le \omega_{\text{e}}##.

For a dust universe ; ##a(t) \propto t^{2/3}##, we get a frequency distribution ##f(\omega) \, d\omega \propto \omega^{3/2} \, d\omega##.

The problem is that I never saw this analysis anywhere, in any book of General Relativity. Someone has references for this ?

Any idea would be greatly appreciated !
 
Last edited:
Physics news on Phys.org
Barnak said:
Why the LaTeX codes aren't showing properly inside text lines, while it's working for larger equations ? What is the environment for LaTeX code here ?? For a Physics forum, this is really weird !
Use double #'s for inline code, just as you use double $'s for the rest.
 
So, no comments on this fascinating subject ?
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 14 ·
Replies
14
Views
5K