Combine two different size matrix in state equations

  • Thread starter Thread starter khedira
  • Start date Start date
  • Tags Tags
    Matrix State
khedira
Messages
11
Reaction score
0
i have two sets of state equations:

1) x(dot) = (2x2)x + (2x1)u
y = (1x2)x

2) x(dot) = (0)x + (1x1)u
y = (1x1)x

given the above, since A, B and C are of different sizes, how can i add the A from 1) and 2) to get a combined A? Is that possible? Please advise. Thank you.
 
Physics news on Phys.org
what are A, B & C? can you explain better?

also what are x,y & u are these 2x1 column vectors etc.
 
lanedance said:
what are A, B & C? can you explain better?

also what are x,y & u are these 2x1 column vectors etc.

Hi lanedance,

Thank you for your reply. I confused myself and is able to get the answer already.

The problem was that i have this A1 2x2 matrix, e.g. [1 2; 3 4] and i have another A2 1x1 matrix [5]. I wish to add them together, i.e. A = A1 + A2. At first i thought that the size different between A1 and A2 make it impossible to directly add them up. Then i realize that since A2 is in scalar form, A = A1 + A2 = [6 7; 8 9].

Thank you for your reply anyway.
 
yeah that doesn't seem quite right, maybe if its A2*I , where I is the identity matrix it works
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top