charlesltl
- 5
- 0
Hello Everyone,
I am trying to compute the standard error of a stress related calculation.
Let's consider the following:
A \pm \DeltaA
B \pm \DeltaB
where A and B are the mean values while \DeltaA and \DeltaB are the respective standard errors.
The common combination of errors formulas are as follows:
y = A + B then, \Deltay = √(\DeltaA2+\DeltaB2)
y = k. A then, \Deltay = k.\DeltaA
Now my equation is,
y = k2 . [ A + k1 . ( A + B + C ) ]
May I know if my following working is correct?
( A + B + C )
= √(\DeltaA2+\DeltaB2 + \DeltaC2)
k1 . ( A + B + C )
= k1 . √(\DeltaA2+\DeltaB2 + \DeltaC2)
A + k1 . ( A + B + C )
= √[\DeltaA2 + (k1 . √(\DeltaA2+\DeltaB2 + \DeltaC2))2]
= √[\DeltaA2 + k12 . (\DeltaA2+\DeltaB2 + \DeltaC2)]
k2 . [ A + k1 . ( A + B + C ) ]
= k2 . √[\DeltaA2 + k12 . (\DeltaA2+\DeltaB2 + \DeltaC2)]
I am confused because I was suggested that it should be,
k2 . [ A + k1 . ( A + B + C ) ]
= k2 . √ [k1. \DeltaA2 + k12 . (\DeltaA2+\DeltaB2 + \DeltaC2)]
Your input in highly appreciated.
Charles
I am trying to compute the standard error of a stress related calculation.
Let's consider the following:
A \pm \DeltaA
B \pm \DeltaB
where A and B are the mean values while \DeltaA and \DeltaB are the respective standard errors.
The common combination of errors formulas are as follows:
y = A + B then, \Deltay = √(\DeltaA2+\DeltaB2)
y = k. A then, \Deltay = k.\DeltaA
Now my equation is,
y = k2 . [ A + k1 . ( A + B + C ) ]
May I know if my following working is correct?
( A + B + C )
= √(\DeltaA2+\DeltaB2 + \DeltaC2)
k1 . ( A + B + C )
= k1 . √(\DeltaA2+\DeltaB2 + \DeltaC2)
A + k1 . ( A + B + C )
= √[\DeltaA2 + (k1 . √(\DeltaA2+\DeltaB2 + \DeltaC2))2]
= √[\DeltaA2 + k12 . (\DeltaA2+\DeltaB2 + \DeltaC2)]
k2 . [ A + k1 . ( A + B + C ) ]
= k2 . √[\DeltaA2 + k12 . (\DeltaA2+\DeltaB2 + \DeltaC2)]
I am confused because I was suggested that it should be,
k2 . [ A + k1 . ( A + B + C ) ]
= k2 . √ [k1. \DeltaA2 + k12 . (\DeltaA2+\DeltaB2 + \DeltaC2)]
Your input in highly appreciated.
Charles