Vishak said:
Ohh okay, thank you.
Just to get my fundamentals correct, would be I be correct in saying this?
$$\int \int \boldsymbol{F}\cdot \boldsymbol{n}dS = \int \int \int div(\boldsymbol{F})dV = \int \int (curl\boldsymbol{F})\cdot \boldsymbol{n }dA = \oint \boldsymbol{F}\cdot dr$$
Here's what you have - the three basic Fundamental Theorems of Calculus, in increasing numbers of dimensions:
\begin{align*}
\int_a^bf'(x) \, dx&=f(b)-f(a) \quad \text{Fundamental Theorem of Calculus} \\
\iint_S (\nabla\times\mathbf{G}) \cdot d\mathbf{A}&= \oint_C \mathbf{G}\cdot d\mathbf{r} \quad \text{Stoke's Theorem} \\
\iiint_V (\nabla\cdot\mathbf{F}) \, dV&= \iint_S \mathbf{F}\cdot d\mathbf{A} \quad \text{Divergence Theorem},
\end{align*}
where that last surface integral in the divergence theorem is a closed integral. For some reason our $\LaTeX$ rendering does not allow the \oiint symbol.
A couple of comments about these three theorems:
- Note that all three theorems look like $$\int_{\text{interior}}(\text{derivative of something}) \, dH=\int_{\text{boundary}}(\text{something}) \,dG, $$
where $dH$ has one more dimension than $dG$.
- Green's Theorem is a special case of Stoke's Theorem.
I'm afraid you can't combine Stoke's Theorem with the Divergence Theorem. I've thought myself sometimes: couldn't you combine the Divergence Theorem with Stoke's Theorem? Here's the problem: Stoke's Theorem has an open surface with a closed boundary. But the Divergence Theorem has a volume with a closed surface. A closed surface has no contour for a boundary, so that you can't go from Divergence to Stoke's all in one equation. In addition, in order to use both theorems all together (referencing the equations above), you'd have to have $\mathbf{F}=\nabla\times\mathbf{G}$. But $\nabla\cdot(\nabla\times\mathbf{G})=0$, a vector calculus identity. So even if you were able to combine the equations into one like this:
$$\iiint_V (\nabla \cdot(\nabla\times\mathbf{G})) \, dV
=\iint_S (\nabla\times\mathbf{G})\cdot d\mathbf{A}
=\oint_C \mathbf{G}\cdot d\mathbf{r},$$
the initial volume integral is zero. In other words, this equation couldn't tell you anything.