Common ground and supply voltages

  • Thread starter Thread starter Funky Oordvork
  • Start date Start date
  • Tags Tags
    Ground Supply
AI Thread Summary
The discussion centers around the concept of common grounding two separate power supplies, specifically capacitors, and the implications for voltage potentials. The original poster is confused about how connecting the bottom plates of the capacitors affects their voltages, believing it alters the voltage across them. Responses clarify that while the bottom plates may equalize in potential, this does not change the voltage difference across each capacitor, as there is no closed circuit to allow current flow. The voltage across each capacitor remains independent, and the potential changes only affect the reference points for measurement. Ultimately, the key takeaway is that grounding does not alter the voltage across the capacitors in this configuration.
Funky Oordvork
Messages
1
Reaction score
0
I have already asked this question at electronics.stackexchange but I still don't get it. I thought I understood it in terms of a water analogy but when I went back to electrons it still didn't make sense to me. My first reaction when encountering the idea of common grounding 2 separate power supplies was that it would alter the voltages of the supplies, but that doesn't seem to happen. So I thought of the simplest example I could (using capacitors instead of batteries etc.). Here are two capacitors acting as power supplies in circuits with very high resistance loads, one at twice the voltage of the other and with twice as much charge on its plates :

http://i.imgur.com/46rPk.png

if I common ground them :

http://i.imgur.com/RGWKK.png

I realize that this does not create an additional closed circuit. However the bottom plates were at different potentials yet they must now be at the same potential. That means the potential of one has increased and the potential of the other has decreased. Meanwhile the potentials of the top plates are unchanged so to my mind the voltages across both capacitors must have changed. Could someone please explain where I am going wrong in terms of potentials and / or electrons, before and after.
 
Engineering news on Phys.org
Funky Oordvork said:
I realize that this does not create an additional closed circuit. However the bottom plates were at different potentials yet they must now be at the same potential. That means the potential of one has increased and the potential of the other has decreased.
Potential with respect to what? Where are you connecting the leads of your voltmeter?

Funky Oordvork said:
Meanwhile the potentials of the top plates are unchanged so to my mind the voltages across both capacitors must have changed. Could someone please explain where I am going wrong in terms of potentials and / or electrons, before and after.
Again, the top plates are unchanged with respect to what point? Where are your voltmeter leads connected?
 
The bottom plates may or may not be at different voltages before connection, the voltage difference is undefined. However that does not matter. In this circuit connecting the bottom ends has no effect on each circuit's energy. The right hand still has the same voltage diff across the capacitor, the left is equally unaffected. There is no closed circuit to carry current or provide a voltage reference, so each cct can be analysed completely independently even after connecting the bottom ends.

Assume the original voltage across the right capacitor is 2v and the left is 1v. The potentials at the tops on each side are changed as the charge on the capacitor sets the right hand top as two volts above the bottom, and the left hand top as one volt above the bottom, so the difference of the tops is now defined as 1v.
 
Last edited:
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top