Prove Commutator Identity: e^xA B e-xA = B + [A,B]x + ...

kreil
Science Advisor
Insights Author
Messages
665
Reaction score
68

Homework Statement




Prove the following identity:

e^{x \hat A} \hat B e^{-x \hat A} = \hat B + [\hat A, \hat B]x + \frac{[\hat A, [\hat A, \hat B]]x^2}{2!}+\frac{[\hat A,[\hat A, [\hat A, \hat B]]]x^3}{3!}+...

where A and B are operators and x is some parameter.

Homework Equations


e^x = 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...
e^{-x} = 1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+...

The Attempt at a Solution



\hat B e^{-x \hat A} = \hat B - [\hat B, \hat A]x + \frac{[[\hat B, \hat A], \hat A] x^2}{2!}+...

It seems after I rearrange the commutation orders, the signs all become positive and this is the required result, so I know I must be doing something wrong. I think it has to do with how I'm multiplying out B into the series..

i.e. \hat B (\hat A x)^2 = [\hat B, \hat A \hat A] x^2...??

or \hat B (\hat A x)^2 = [[\hat B, \hat A], \hat A] x^2...??
 
Physics news on Phys.org
kreil said:
It seems after I rearrange the commutation orders, the signs all become positive and this is the required result, so I know I must be doing something wrong. I think it has to do with how I'm multiplying out B into the series..

i.e. \hat B (\hat A x)^2 = [\hat B, \hat A \hat A] x^2...??

or \hat B (\hat A x)^2 = [[\hat B, \hat A], \hat A] x^2...??

Neither is correct.

\hat{B}(x\hat{A})^2=BA^2x^2[/itex]<br /> <br /> You won&#039;t have anything involving commutators until you multiply by both exponentials and collect terms in powers of the parameter x.
 
ahh I see it now I think..

e^{x \hat A} \hat B e^{-x \hat A} = \left ( 1+\hat A x + \frac{1}{2} \hat A^2 x^2 + \frac{1}{6} \hat A^3 x^3+... \right ) \left ( \hat B - \hat B \hat A x + \frac{1}{2} \hat B \hat A^2 x^2 - \frac{1}{6}\hat B \hat A^3 x^3+... \right )

So I multiply this out, collect terms in powers of x, and simplify to the commutator relations

Thanks
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top