Commutator Relations; Conjugate Product of a Dimensionless Operator

lukka
Messages
24
Reaction score
0
Consider the following commutator for the product of the creation/annihilation operators;

[A*,A] = (2m(h/2∏)ω)^1 [mωx - ip, mωx + ip] = (2m(h/2∏)ω)^1 {m^2ω^2 [x,x] + imω ([x,p] - [p,x]) + [p,p]}

Since we have the identity;

[x,p] = -[p,x]

can one assume that..

[x,p] - [p,x] = [x,p] - (-[x,p]) = -2[p,x]
 
Physics news on Phys.org
That's right.

(And of course [x, x] = [p, p] = 0).
 
  • Like
Likes 1 person
Thanks CompuChip
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top