- #1

- 9

- 0

Here is a thought, that I would like some comments on:

System A contains a planet, and the advanced civilisation on this planet, have created a box with matter and antimatter ready to annihilate. Some electronic in the box will carry out this annihilation automatically, let’s say when the strength of the surrounding gravity field decreases below a certain limit.

Now, they are pushing this box out in the universe with the exact escape velocity of this planet.

The situation mentioned above, also happens in system B. The two systems are completely identical, except that the planet in system B has more mass, yet the same size.

So it is more “expensive” for the civilisation in system B, to push the box out in space, because of the higher escape velocity of this planet. It takes more energy.

Sometime in a very far future, the boxes will reach the decreased value of gravity that makes the matter and antimatter annihilate.

The two boxes will explode at exactly the same very low strength of gravity, and at very low speeds.

So, (that portion if not all) of the energy that is being converted from mass to electromagnetic radiation when the matter and antimatter annihilates, must be the same in the two systems.

How can the proportion between the energy in these two systems still be the same, as the civilisation in system B did spend more energy, pushing the box out in space?

Where and how in the two systems do we now see a change, that reflects and equalizes the two civilisations different use of energy, so that the proportion of the energy between system A and B will stay the same?