(Comparison Theorem) Why is x/(x^3+1) convergent on interval 0 to infinity?

Kaede_N9
Messages
11
Reaction score
0
∫0->∞ x/(x^3 + 1) dx. Use comparison theorem to determine whether the integral is convergent of divergent.

Homework Equations



None.

The Attempt at a Solution



∫0->∞ x/(x^3 + 1) dx

= ∫0->∞ x/(x^3) dx
= ∫0->∞ 1/(x^2) dx

From my class I learned that
∫1->∞ 1/(x^2) dx , is convergent

But now that the interval begins from 0 to infinity
∫0->∞ 1/(x^2) dx is divergent!

Although my professor, and as well as the back of the book, tells me that ∫0->∞ x/(x^3+1) dx is convergent.

This must mean that I did something wrong... what would that be?
 
Physics news on Phys.org
Kaede_N9 said:
∫0->∞ x/(x^3 + 1) dx

= ∫0->∞ x/(x^3) dx

Uuuh, why?
 
micromass said:
Uuuh, why?

1/(x+1)

if x = ∞
1/(∞+1) ≈ 0
0 ≈ 1/(∞+1) ≈ 1/(∞) ≈ 0
 
You can compare x/(x^3+ 1)< x/x^3= 1/x^2 to show that the integral from 1 to infinity is finite. And now, because the original integrand is finite on the interval from 0 to 1, that entire integral is convergent.
 
HallsofIvy said:
You can compare x/(x^3+ 1)< x/x^3= 1/x^2 to show that the integral from 1 to infinity is finite. And now, because the original integrand is finite on the interval from 0 to 1, that entire integral is convergent.

For the original integrand, we know that it is finite on the interval from 0 to 1 by plugging in 0 and 1? It seems like the original integrand does not have an asymptote like 1/x^2 does.
 
Kaede_N9 said:
For the original integrand, we know that it is finite on the interval from 0 to 1 by plugging in 0 and 1? It seems like the original integrand does not have an asymptote like 1/x^2 does.
That is not enough to show that it's finite on the whole interval [0, 1].
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top