Shay10825
- 337
- 0
Homework Statement
Evaluate the following integral for 0<r<1 by writing \cos\theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta}) reducing the given integral to a complex integral over the unit circle.
Evaluate: \displaystyle{\frac{1}{2\pi}\int_0^{2\pi}\frac{1}{1-2r\cos\theta + r^2}\,d\theta}
Homework Equations
none
The Attempt at a Solution
\displaystyle\cos\theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta})}
\displaystyle{z=e^{i\theta}}
\displaystyle{ \cos t= \frac{1}{2}(z+ \frac{1}{z})}
\displaystyle{\frac{dz}{iz}= dt}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\displaystyle{\frac{1}{2\pi}\oint \frac{1}{1-2r[\frac{1}{2}(z+\frac{1}{z})]+r^2}\,\frac{dz}{iz}}
\displaystyle{\frac{1}{2\pi}\oint \frac{1}{z-2rz[\frac{1}{2}(z+\frac{1}{z})]+r^2}\,\frac{dz}{i}}
\displaystyle{\frac{-i}{2\pi}\oint \frac{1}{z-2rz[\frac{1}{2}(z+\frac{1}{z})]+r^2}\,dz}
\displaystyle{\frac{-i}{2\pi}\oint \frac{1}{z-r^2z^2-r+r^2}\,dz}
But I get stuck here. What do I do with the "r"? Should I factor it out, and if yes then how?
Thanks