Solving Complex Analysis Problems - Get Advice Here!

buzzmath
Messages
108
Reaction score
0
Can anyone give me some advice on how to solve this problem?

in the reflection principle if f(x) is pure imaginary then the conjugate of f(z)=-f(z*) where z* is the complex conjugate of z.

Any advice on where to start?

thanks
 
Physics news on Phys.org
hint: if f is purely imaginary, then one can write f(z)=iy, for some real number, y.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top