Your question doesn't make it clear whether you mean special or general relativity.
For special relativity, then "complex four-vector algebra" is a very natural way of looking at things; it is of course equivalent to the Pauli Algebra but with a slightly different approach. I wrote my own informal summary of the subject some time ago, which you can find at this URL, although Clifford Algebra enthusiasts (such as the late Pertti Lounesto) use slightly different notation from mine:
http://pws.prserv.net/jonathan_scott/physics/cfv.pdf
William Baylis likes to call this algebra the "Algebra of Physical Space" (APS), and you may find further information by searching on that subject. One thing I find most interesting about this notation is that it allows one to write the Dirac equation directly in this algebra (that is, the Pauli Algebra) rather than needing to use the Dirac Algebra.