MHB Complex numbers and conjugates

AI Thread Summary
The discussion revolves around proving that two complex numbers, z and w, must be conjugates given the equation (x-z)(x-w) = ax² + bx + c, where a, b, and c are real. The user correctly identifies that a = 1, -b = w + z, and c = wz. It is established that for the sum of the imaginary parts (q + s) to equal zero, s must equal -q, leading to the conclusion that the real parts (p and r) must also be equal. Ultimately, this demonstrates that z and w are indeed complex conjugates of each other.
Sean1
Messages
5
Reaction score
0
Hi everyone,

Can you please assist with the following problem?

The complex numbers z and w are such that for the real variable x,
(x-z)(x-w)=ax2+bx+c for real a,b and c.

By letting z=p+qi and w=r+si, prove that z and w must be conjugates of one another.So far, I have determined that a=1, -b=w+z and c=wz,
I know I need to show that q+s=0 and that p=r, but I am not sure how to proceed.

Thanks for reading my post.
 
Mathematics news on Phys.org
Sean said:
Hi everyone,

Can you please assist with the following problem?

The complex numbers z and w are such that for the real variable x,
(x-z)(x-w)=ax2+bx+c for real a,b and c.

By letting z=p+qi and w=r+si, prove that z and w must be conjugates of one another.So far, I have determined that a=1, -b=w+z and c=wz,
I know I need to show that q+s=0 and that p=r, but I am not sure how to proceed.

Thanks for reading my post.

Hi Sean,

The three equations you have obtained are correct. Substitute for $w$ and $z$ in these equations. For example,

\[-b=w+z\Rightarrow (p+qi)+(r+si)=-b\Rightarrow (p+r)+i(q+s)=-b\]

Since $-b$ is a real number what can you say about $q+s$ which is the imaginary part?
 
Sean said:
Hi everyone,

Can you please assist with the following problem?

The complex numbers z and w are such that for the real variable x,
(x-z)(x-w)=ax2+bx+c for real a,b and c.

By letting z=p+qi and w=r+si, prove that z and w must be conjugates of one another.So far, I have determined that a=1, -b=w+z and c=wz,
I know I need to show that q+s=0 and that p=r, but I am not sure how to proceed.

Thanks for reading my post.

Remember that b and c are real. The only way you can add two complex numbers to get a real number is if the imaginary parts cancel out, so $\displaystyle \begin{align*} \mathcal{I}\,(z) = -\mathcal{I}\,(w) \end{align*}$.

Now if you write $\displaystyle \begin{align*} z = p + \mathrm{i}\,q \end{align*}$ and $\displaystyle \begin{align*} w = r + \mathrm{i}\,s \end{align*}$ (where p,q,r,s are all real), then we have already shown that s = -q, giving $\displaystyle \begin{align*} w = r - \mathrm{i}\,q \end{align*}$. Multiplying z and w gives

$\displaystyle \begin{align*} w\,z &= \left( r - \mathrm{i}\,q \right) \left( p + \mathrm{i}\,q \right) \\ &= p\,r + \mathrm{i}\,q\,r - \mathrm{i}\,p\,q - \mathrm{i}^2\, q^2 \\ &= p\,r + q^2 + \mathrm{i} \, \left( q\,r - p\,q \right) \end{align*}$

For this to be real,

$\displaystyle \begin{align*} q\,r - p\,q &= 0 \\ q \, \left( r - p \right) &= 0 \\ q = 0 \textrm{ or } r - p &= 0 \\ q = 0 \textrm{ or } p &= r \end{align*}$

Therefore, if w and z are nonreal, $\displaystyle \begin{align*} \mathcal{R}\,(z) = \mathcal{R}\,(w) \end{align*}$.

This has shown that w and z must be complex conjugates.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
1
Views
1K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
13
Views
2K
Replies
5
Views
3K
Replies
2
Views
4K
Back
Top