MHB Complex Numbers - from Polar to Algebraic

AI Thread Summary
The discussion focuses on converting complex numbers from polar to algebraic form, specifically for the expressions rcis(90° + θ) and rcis(90° - θ). The correct algebraic forms are identified as -y + ix and y + ix, respectively. The confusion arises regarding the first expression, where the user expects -x + iy instead of -y + ix. The mathematical derivation shows that the transformation involves using trigonometric identities, leading to the correct results. Understanding these conversions relies on the properties of sine and cosine functions.
Yankel
Messages
390
Reaction score
0
Hello all,

I am trying to find the algebraic representation of the following numbers:

\[rcis(90^{\circ}+\theta )\]

and

\[rcis(90^{\circ}-\theta )\]

The answers in the book are:

\[-y+ix\]

and

\[y+ix\]

respectively.

I don't get it...

In the first case, if I take 90 degrees (working with degrees, not radians in this question) plus the angel, I get a point in the second quadrant. Why isn't the answer -x+iy ?

View attachment 6854

Thank you !
 

Attachments

  • complex.JPG
    complex.JPG
    10.7 KB · Views: 105
Mathematics news on Phys.org
$$z = r[\cos(90^\circ + \theta) + i\sin(90^\circ + \theta)]$$

$z = r\bigg[\cos(90^\circ)\cos(\theta) - \sin(90^\circ)\sin(\theta) + i[\sin(90^\circ)\cos(\theta) + \cos(90^\circ)\sin(\theta)] \bigg]$

$z = r\bigg[-\sin(\theta) + i \cos(\theta) \bigg]$

$z = -r\sin(\theta) + i\cdot r\cos(\theta) = -y + ix$

---------------------------------------------------------------------------------

$$z = r[\cos(90^\circ - \theta) + i\sin(90^\circ - \theta)]$$

$z = r\bigg[\cos(90^\circ)\cos(\theta) + \sin(90^\circ)\sin(\theta) + i[\sin(90^\circ)\cos(\theta) - \cos(90^\circ)\sin(\theta)] \bigg]$

$z = r\bigg[\sin(\theta) + i \cos(\theta) \bigg]$

$z = r\sin(\theta) + i\cdot r\cos(\theta) = y + ix$
 
Or just recall that [math]cos(90- x)= sin(x)[/math] and [math]cos(90- x)= sin(x)[/math] from the basic definitions of "sine" and "cosine" instead of using the more general "sum" identity.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top