MHB Complex Numbers VI: Finding Least Value of |z-2√2-4i|

AI Thread Summary
The discussion focuses on finding the least value of |z-2√2-4i| given the constraints |z-4i|≤√5 and π/4≤arg(z+4)≤π/2. Participants have sketched the loci on an Argand diagram and are exploring the intersection of these sets. The key challenge is determining the shortest distance from a point to a semi-disk, which involves identifying the complex number z_1 that minimizes this distance. There are also technical issues regarding the use of LaTeX for mathematical expressions. Ultimately, the goal is to find the exact form of z_1 and the corresponding least value.
Punch
Messages
44
Reaction score
0
Sketch on an Argand diagram the set of points satisfying both |z-4i|<=\sqrt{5} and \frac{\pi}{4}<=arg(z+4)<=\frac{\pi}{2}.

I have already sketched the 2 loci. The problem lies in the following part.

Hence find the least value of |z-2\sqrt{2}-4i|. Find, in exact form, the complex number z_1 represented by the point P that gives this least value.
 
Mathematics news on Phys.org
Punch said:
Hence find the least value of |z-2\sqrt{2}-4i|.
Over which set of z? The intersection defined in the first part? It seems that you need to find the shortest distance from a point to a semi-disk.

Why don't you wrap the [tex]...[/tex] tags around your formulas?
 
Evgeny.Makarov said:
Over which set of z? The intersection defined in the first part? It seems that you need to find the shortest distance from a point to a semi-disk.

Why don't you wrap the \(z_1\) tags around your formulas?

Yes, how do I then find the complex number z_1 in the following part?

I tried using the latex but they didnt seem to work
 
Punch said:
Yes, how do I then find the complex number z_1 in the following part?
See the following picture.

argand.png


Punch said:
I tried using the latex but they didnt seem to work
Type [tex]\frac{\pi}{4}\le\arg(z+4)\le\frac{\pi}{2}[/tex] to get \frac{\pi}{4}\le\arg(z+4)\le\frac{\pi}{2}.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top