I'm going crazy trying to figure out how to do this. Here are two eigen value solutions: r=-1+-2i to a problem. And the two eigen vectors are (-2i, 1) and (2i, 1). How do I covert this to a real-valued solution? The book used (-2i, 1) to come up with the solution x = c * e^(-t)( -2sin(2t), cos(2t) ) + d * e^(-t)( 2cos(2t), sin(2t) )(adsbygoogle = window.adsbygoogle || []).push({});

c and d are constants.

I know that real value of r=1+-2i should be e^(-t)sin(2t) + e^(-t)cos(2t) but I don't how they came up with their answer using this fact.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Complex-valued solutions to real-valued solutions

**Physics Forums | Science Articles, Homework Help, Discussion**