(Complex Variables) Differentiability of Arg z

irony of truth
Messages
89
Reaction score
0
I am proving that the function f(z) = Arg z is nowhere differentiable by using the definiton of a derivative. I let z = x + yi. Then, if the limit exists, we have

f'(z) = lim (/\z -> 0) ( f(z + /\z) - f(z) ) / /\z.

(Note that /\ is the triangle symbol)
Also, let /\z = p + iq, where p and q are real values.

Arg z = Tan^-1 (y/x)...how will I continue from here?
 
Physics news on Phys.org
so you want to get

<br /> f&#039;(z) = \lim_{\Delta z \rightarrow 0} \frac{f(z+\Delta z) - f(z)}{\Delta z}<br />

Express the limit in terms of u(x_0,y_0) and v(x_0,y_0), that is,x_0, y_0, \Delta x, \Delta y. then evaluate the limit using 2 approaches: when \Delta x = 0 and \Delta y = 0. If f(z) = Arg z is differentiable, the derivative should be equal in both cases.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top