MHB Complex Variables - Legendre Polynomial

Click For Summary
The Legendre polynomial \( P_n(z) \) is defined using the formula involving derivatives of \( (z^2-1)^n \). The discussion demonstrates the application of Cauchy's formula to show that \( P_n(z) \) can be expressed as an integral over a closed curve \( \omega \). A subsequent problem involves transforming this integral into a form involving a parameterization of \( \omega \) as a circle, leading to a new representation of \( P_n(z) \). The participants express confusion about simplifying the integral but provide detailed steps toward achieving the desired result. Ultimately, the goal is to confirm the equality of the two representations of the Legendre polynomial.
joypav
Messages
149
Reaction score
0
We define the Legendre polynomial $P_n$ by
$$P_n (z)=\frac{1}{2^nn!}\frac{d^n}{dz^n}(z^2-1)^n$$
Let $\omega$ be a smooth simple closed curve around z. Show that
$$P_n (z)=\frac{1}{2i\pi}\frac{1}{2^n}\int_\omega\frac{(w^2-1)^n}{(w-z)^{n+1}}dw$$

What I have:

We know $(w^2-1)^n$ is analytic on and inside $\omega$ and z lies within $\omega$.
So, by Cauchy's Formula,
$$\frac{1}{2i\pi}\frac{1}{2^n}\int_\omega\frac{(w^2-1)^n}{(w-z)^{n+1}}dw$$
$$=\frac{1}{2i\pi}\frac{1}{2^n}\frac{2i\pi}{n!}\frac{d^n}{dw^n}(w^2-1)^n\rvert_{w=z}$$
$$=\frac{1}{2^n}\frac{1}{n!}\frac{d^n}{dw^n}(w^2-1)^n\rvert_{w=z}$$
$$=\frac{1}{2^nn!}\frac{d^n}{dz^n}(z^2-1)^n=P_n(z)$$

Now, take $\omega$ to be the circle of radius $\sqrt{|z^2-1|}$ centered at z. Show that
$$P_n(z)=\frac{1}{2\pi}\int_0^{2\pi}\left(z+\sqrt{z^2-1}\cos(\theta)\right)^{\!n}\,d\theta$$

What I have:

I am confused about how to apply the previous problem. If I could get a push in the right direction I would be very appreciative!
 
Physics news on Phys.org
So, we have
\begin{align*}
\omega&= z+\sqrt{|z^2-1|} \, e^{i\theta} \\
\omega - z &=\sqrt{|z^2-1|} \, e^{i\theta} \\
d\omega &=\sqrt{|z^2-1|} \cdot i \cdot e^{i\theta} \, d\theta \\
\omega^2 &=z^2+2z\sqrt{|z^2-1|} \, e^{i\theta} + |z^2-1| \, e^{2i\theta}.
\end{align*}
Now we have the necessary ingredients to plug into what you showed before, namely, $\displaystyle P_n(z)=\frac{1}{2\pi i} \, \frac{1}{2^n} \, \oint_{\omega}\frac{(\omega^2 - 1)^n}{(\omega-z)^{n+1}} \, d\omega,$ to obtain
$$
P_n(z)=\frac{1}{2\pi i} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, e^{i\theta}+|z^2-1| \, e^{2i\theta} - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, e^{i\theta}\right)^{n+1}}
\cdot\sqrt{|z^2-1|}\cdot i \cdot e^{i\theta} \, d\theta.
$$
There's definitely some simplification possible here. The hope is that, once you do simplify, you will get the desired result above. It does not seem impossible that you could get equality.
 
Thank you!

(for the sake of completion)
$$
P_n(z)=\frac{1}{2\pi i} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, e^{i\theta}+|z^2-1| \, e^{2i\theta} - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, e^{i\theta}\right)^{n+1}}
\cdot\sqrt{|z^2-1|}\cdot i \cdot e^{i\theta} \, d\theta
$$
$$
=\frac{1}{2\pi} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, e^{i\theta}+|z^2-1| \, e^{2i\theta} - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, e^{i\theta}\right)^{n}}d\theta
$$
$$
=\frac{1}{2\pi} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))+|z^2-1| \, (\cos(2\theta)+i\sin(2\theta)) - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))\right)^{n}}d\theta
$$
$$
=\frac{1}{2\pi} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))+|z^2-1| \, (2\cos^2(\theta)-1+2i\sin(\theta)\cos(\theta)) - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))\right)^{n}}d\theta
$$
$$
=\frac{1}{2\pi} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left((2)^n(\sqrt{|z^2-1|}) \, (\cos(\theta)+i\sin(\theta))(z+\sqrt{z^2-1}\cos(\theta) \, \right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))\right)^{n}}d\theta
$$
$$
=\frac{1}{2\pi} \,\int_{0}^{2\pi}{\displaystyle\left(z+\sqrt{z^2-1}\cos(\theta) \, \right)^{n}}d\theta.
$$
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K