MHB Complex Variables - Legendre Polynomial

joypav
Messages
149
Reaction score
0
We define the Legendre polynomial $P_n$ by
$$P_n (z)=\frac{1}{2^nn!}\frac{d^n}{dz^n}(z^2-1)^n$$
Let $\omega$ be a smooth simple closed curve around z. Show that
$$P_n (z)=\frac{1}{2i\pi}\frac{1}{2^n}\int_\omega\frac{(w^2-1)^n}{(w-z)^{n+1}}dw$$

What I have:

We know $(w^2-1)^n$ is analytic on and inside $\omega$ and z lies within $\omega$.
So, by Cauchy's Formula,
$$\frac{1}{2i\pi}\frac{1}{2^n}\int_\omega\frac{(w^2-1)^n}{(w-z)^{n+1}}dw$$
$$=\frac{1}{2i\pi}\frac{1}{2^n}\frac{2i\pi}{n!}\frac{d^n}{dw^n}(w^2-1)^n\rvert_{w=z}$$
$$=\frac{1}{2^n}\frac{1}{n!}\frac{d^n}{dw^n}(w^2-1)^n\rvert_{w=z}$$
$$=\frac{1}{2^nn!}\frac{d^n}{dz^n}(z^2-1)^n=P_n(z)$$

Now, take $\omega$ to be the circle of radius $\sqrt{|z^2-1|}$ centered at z. Show that
$$P_n(z)=\frac{1}{2\pi}\int_0^{2\pi}\left(z+\sqrt{z^2-1}\cos(\theta)\right)^{\!n}\,d\theta$$

What I have:

I am confused about how to apply the previous problem. If I could get a push in the right direction I would be very appreciative!
 
Physics news on Phys.org
So, we have
\begin{align*}
\omega&= z+\sqrt{|z^2-1|} \, e^{i\theta} \\
\omega - z &=\sqrt{|z^2-1|} \, e^{i\theta} \\
d\omega &=\sqrt{|z^2-1|} \cdot i \cdot e^{i\theta} \, d\theta \\
\omega^2 &=z^2+2z\sqrt{|z^2-1|} \, e^{i\theta} + |z^2-1| \, e^{2i\theta}.
\end{align*}
Now we have the necessary ingredients to plug into what you showed before, namely, $\displaystyle P_n(z)=\frac{1}{2\pi i} \, \frac{1}{2^n} \, \oint_{\omega}\frac{(\omega^2 - 1)^n}{(\omega-z)^{n+1}} \, d\omega,$ to obtain
$$
P_n(z)=\frac{1}{2\pi i} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, e^{i\theta}+|z^2-1| \, e^{2i\theta} - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, e^{i\theta}\right)^{n+1}}
\cdot\sqrt{|z^2-1|}\cdot i \cdot e^{i\theta} \, d\theta.
$$
There's definitely some simplification possible here. The hope is that, once you do simplify, you will get the desired result above. It does not seem impossible that you could get equality.
 
Thank you!

(for the sake of completion)
$$
P_n(z)=\frac{1}{2\pi i} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, e^{i\theta}+|z^2-1| \, e^{2i\theta} - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, e^{i\theta}\right)^{n+1}}
\cdot\sqrt{|z^2-1|}\cdot i \cdot e^{i\theta} \, d\theta
$$
$$
=\frac{1}{2\pi} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, e^{i\theta}+|z^2-1| \, e^{2i\theta} - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, e^{i\theta}\right)^{n}}d\theta
$$
$$
=\frac{1}{2\pi} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))+|z^2-1| \, (\cos(2\theta)+i\sin(2\theta)) - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))\right)^{n}}d\theta
$$
$$
=\frac{1}{2\pi} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))+|z^2-1| \, (2\cos^2(\theta)-1+2i\sin(\theta)\cos(\theta)) - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))\right)^{n}}d\theta
$$
$$
=\frac{1}{2\pi} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left((2)^n(\sqrt{|z^2-1|}) \, (\cos(\theta)+i\sin(\theta))(z+\sqrt{z^2-1}\cos(\theta) \, \right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))\right)^{n}}d\theta
$$
$$
=\frac{1}{2\pi} \,\int_{0}^{2\pi}{\displaystyle\left(z+\sqrt{z^2-1}\cos(\theta) \, \right)^{n}}d\theta.
$$
 

Similar threads

Replies
4
Views
2K
Replies
17
Views
972
Replies
4
Views
2K
Replies
1
Views
1K
Replies
9
Views
3K
Back
Top