Complex Variables - Legendre Polynomial

Click For Summary
SUMMARY

The discussion centers on the derivation and properties of the Legendre polynomial $P_n(z)$, defined by the formula $P_n(z)=\frac{1}{2^nn!}\frac{d^n}{dz^n}(z^2-1)^n$. The participants demonstrate the application of Cauchy's Integral Formula to establish the equivalence of $P_n(z)$ with an integral representation involving a smooth closed curve $\omega$. Additionally, they explore a specific case where $\omega$ is a circle, leading to the integral expression $P_n(z)=\frac{1}{2\pi}\int_0^{2\pi}\left(z+\sqrt{z^2-1}\cos(\theta)\right)^{n}\,d\theta$. The discussion highlights the analytic properties of $(w^2-1)^n$ and the simplification of integrals in complex analysis.

PREREQUISITES
  • Understanding of complex analysis, particularly Cauchy's Integral Formula.
  • Familiarity with Legendre polynomials and their properties.
  • Knowledge of analytic functions and their derivatives.
  • Basic skills in contour integration and parametrization of curves.
NEXT STEPS
  • Study the derivation of Cauchy's Integral Formula in detail.
  • Explore the properties and applications of Legendre polynomials in physics and engineering.
  • Learn about contour integration techniques in complex analysis.
  • Investigate the relationship between Legendre polynomials and orthogonal functions.
USEFUL FOR

Mathematicians, physicists, and engineering students interested in advanced calculus, complex analysis, and the applications of Legendre polynomials in solving differential equations and modeling physical phenomena.

joypav
Messages
149
Reaction score
0
We define the Legendre polynomial $P_n$ by
$$P_n (z)=\frac{1}{2^nn!}\frac{d^n}{dz^n}(z^2-1)^n$$
Let $\omega$ be a smooth simple closed curve around z. Show that
$$P_n (z)=\frac{1}{2i\pi}\frac{1}{2^n}\int_\omega\frac{(w^2-1)^n}{(w-z)^{n+1}}dw$$

What I have:

We know $(w^2-1)^n$ is analytic on and inside $\omega$ and z lies within $\omega$.
So, by Cauchy's Formula,
$$\frac{1}{2i\pi}\frac{1}{2^n}\int_\omega\frac{(w^2-1)^n}{(w-z)^{n+1}}dw$$
$$=\frac{1}{2i\pi}\frac{1}{2^n}\frac{2i\pi}{n!}\frac{d^n}{dw^n}(w^2-1)^n\rvert_{w=z}$$
$$=\frac{1}{2^n}\frac{1}{n!}\frac{d^n}{dw^n}(w^2-1)^n\rvert_{w=z}$$
$$=\frac{1}{2^nn!}\frac{d^n}{dz^n}(z^2-1)^n=P_n(z)$$

Now, take $\omega$ to be the circle of radius $\sqrt{|z^2-1|}$ centered at z. Show that
$$P_n(z)=\frac{1}{2\pi}\int_0^{2\pi}\left(z+\sqrt{z^2-1}\cos(\theta)\right)^{\!n}\,d\theta$$

What I have:

I am confused about how to apply the previous problem. If I could get a push in the right direction I would be very appreciative!
 
Physics news on Phys.org
So, we have
\begin{align*}
\omega&= z+\sqrt{|z^2-1|} \, e^{i\theta} \\
\omega - z &=\sqrt{|z^2-1|} \, e^{i\theta} \\
d\omega &=\sqrt{|z^2-1|} \cdot i \cdot e^{i\theta} \, d\theta \\
\omega^2 &=z^2+2z\sqrt{|z^2-1|} \, e^{i\theta} + |z^2-1| \, e^{2i\theta}.
\end{align*}
Now we have the necessary ingredients to plug into what you showed before, namely, $\displaystyle P_n(z)=\frac{1}{2\pi i} \, \frac{1}{2^n} \, \oint_{\omega}\frac{(\omega^2 - 1)^n}{(\omega-z)^{n+1}} \, d\omega,$ to obtain
$$
P_n(z)=\frac{1}{2\pi i} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, e^{i\theta}+|z^2-1| \, e^{2i\theta} - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, e^{i\theta}\right)^{n+1}}
\cdot\sqrt{|z^2-1|}\cdot i \cdot e^{i\theta} \, d\theta.
$$
There's definitely some simplification possible here. The hope is that, once you do simplify, you will get the desired result above. It does not seem impossible that you could get equality.
 
Thank you!

(for the sake of completion)
$$
P_n(z)=\frac{1}{2\pi i} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, e^{i\theta}+|z^2-1| \, e^{2i\theta} - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, e^{i\theta}\right)^{n+1}}
\cdot\sqrt{|z^2-1|}\cdot i \cdot e^{i\theta} \, d\theta
$$
$$
=\frac{1}{2\pi} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, e^{i\theta}+|z^2-1| \, e^{2i\theta} - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, e^{i\theta}\right)^{n}}d\theta
$$
$$
=\frac{1}{2\pi} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))+|z^2-1| \, (\cos(2\theta)+i\sin(2\theta)) - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))\right)^{n}}d\theta
$$
$$
=\frac{1}{2\pi} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left(z^2+2z\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))+|z^2-1| \, (2\cos^2(\theta)-1+2i\sin(\theta)\cos(\theta)) - 1\right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))\right)^{n}}d\theta
$$
$$
=\frac{1}{2\pi} \, \frac{1}{2^n} \, \int_{0}^{2\pi}\frac{\displaystyle\left((2)^n(\sqrt{|z^2-1|}) \, (\cos(\theta)+i\sin(\theta))(z+\sqrt{z^2-1}\cos(\theta) \, \right)^{n}}{\displaystyle\left(\sqrt{|z^2-1|} \, (\cos(\theta)+i\sin(\theta))\right)^{n}}d\theta
$$
$$
=\frac{1}{2\pi} \,\int_{0}^{2\pi}{\displaystyle\left(z+\sqrt{z^2-1}\cos(\theta) \, \right)^{n}}d\theta.
$$
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K