Composition of 2 Boosts in Special Relativity

OniLink++
Messages
12
Reaction score
0
Most of what I've learned about Special Relativity is self taught using Google and Wikipedia because I'm still in high school, so forgive me if I'm saying something wrong.
Does anyone have the exact equation for the composition of two boosts, without the rotation that's induced by combining two boosts (according to what I've read, a boost followed by a boost is not a pure boost but a boost followed by or preceded by a rotation, which makes sense to me because of effects like relativistic aberration). The article mentioned gyrovector spaces being used to compose two boosts into a pure boost, but I can't find any information on gyrovector spaces. Would anyone mind explaining this to me?
 
Physics news on Phys.org
OniLink++ said:
Most of what I've learned about Special Relativity is self taught using Google and Wikipedia because I'm still in high school, so forgive me if I'm saying something wrong.
Does anyone have the exact equation for the composition of two boosts, without the rotation that's induced by combining two boosts (according to what I've read, a boost followed by a boost is not a pure boost but a boost followed by or preceded by a rotation, which makes sense to me because of effects like relativistic aberration). The article mentioned gyrovector spaces being used to compose two boosts into a pure boost, but I can't find any information on gyrovector spaces. Would anyone mind explaining this to me?

Two boosts in the same direction obvious equals to just a single boost in the same direction. Although, the relationship between the boost speed is not simply: v \neq v_1 + v_2.

Any general Lorentz transformation is a rotation + a boost: you first orient your axis along the direction of the moving object, then boost into its frame.
 
I was pondering something like this in posts 12 and 13 of https://www.physicsforums.com/showthread.php?t=430956" From what I am able to gather, neither rotations nor boosts are commutative. But two rotations amount to a single rotation in another direction. Likewise, two boosts amount to a single boost in another direction.

If you have motors powering rotations on different axes, it appears to be rotating along several axes at once, but in reality, at any given time, the central object is only rotating along one axis. (that is, unless my conclusion in post 13 from the other thread is somehow flawed.)
 
Last edited by a moderator:
OniLink++ said:
Does anyone have the exact equation for the composition of two boosts, without the rotation that's induced by combining two boosts.

Equation 11.98 in Classical Electrodynamics by J.D. Jackson (third edition) has three boosts. But I'm not in the mood to type the whole thing in right now.

It looks commutative, but I think in the following sense: If the rapidities are figured in the original reference frame, then they can be applied in any order (right, forward, up). But if the rapidities are figured in the reference frame of the body which is accelerating, in order (right, forward, up) I don't think the operations are commutative.

For instance, if you do a rapidity change of (right 5, forward 5, up 5) That is effectively rotating to point a certain direction, and then accelerating that way in one boost. But if you consecutively execute rapidity changes (right 5) then (forward 5), then (up 5) in your space-ship, this will have a significantly diferent result
 
OniLink++ said:
The article mentioned gyrovector spaces being used to compose two boosts into a pure boost, but I can't find any information on gyrovector spaces. Would anyone mind explaining this to me?
I strongly doubt that learning about gyrovectors will make it easier to learn special relativity, but if you're interested just out of curiosity, I would guess that this book is the place to start. I haven't read it myself.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top