MHB Compute Two Series: Summation Notation

  • Thread starter Thread starter Krizalid1
  • Start date Start date
  • Tags Tags
    Series
AI Thread Summary
The discussion focuses on computing two series using summation notation. The first series converges to \(1 - \sqrt{\frac{1}{2}}\), derived from the expansion of \((1+x)^{-\frac{1}{2}}\). The second series is more complex, involving factorials and the gamma function, ultimately leading to the result \(1 + \frac{\pi}{2}\). The participants utilize properties of arcsine and various mathematical transformations to derive these results. The conversation highlights the intricacies of series summation and the application of advanced mathematical concepts.
Krizalid1
Messages
106
Reaction score
0
Compute the following series:

$$\frac{1}{2} - \frac{{1 \times 3}}{{2 \times 4}} + \frac{{1 \times 3 \times 5}}{{2 \times 4 \times 6}} \mp \cdots ,$$ $$1 + \frac{{1 \times 2}}{{1 \times 3}} + \frac{{1 \times 2 \times 3}}{{1 \times 3 \times 5}} + \frac{{1 \times 2 \times 3 \times 4}}{{1 \times 3 \times 5 \times 7}} + \cdots .$$
 
Mathematics news on Phys.org
Krizalid said:
Compute the following series:

$$\frac{1}{2} - \frac{{1 \times 3}}{{2 \times 4}} + \frac{{1 \times 3 \times 5}}{{2 \times 4 \times 6}} \mp \cdots ,$$

Remembering that is...

$\displaystyle (1+x)^{-\frac{1}{2}}= 1 - \frac{1}{2}\ x + \frac{1\ 3}{2\ 4}\ x^{2} - \frac{1\ 3\ 5}{2\ 4\ 6}\ x^{3} + ...$ (1)

... is...

$\displaystyle \frac{1}{2} - \frac{1\ 3}{2\ 4} + \frac{1\ 3\ 5}{2\ 4\ 6}- ...= 1- \sqrt{\frac{1}{2}}$ (2)

Kind regards

$\chi$ $\sigma$
 
Last edited:
Yes, that's correct.
Second series is harder though.
 
I think that the second problem has some thing to do with \( \displaystyle \arcsin(x)=\sum_{0}^{\infty}\frac{(2n)!}{4^n (2n+1) (n!)^2}x^{2n+1}\).
 
Krizalid said:
Compute the following series:

$$1 + \frac{{1 \times 2}}{{1 \times 3}} + \frac{{1 \times 2 \times 3}}{{1 \times 3 \times 5}} + \frac{{1 \times 2 \times 3 \times 4}}{{1 \times 3 \times 5 \times 7}} + \cdots .$$

The solution of the second series is effectively a little more difficult task!... let's start defining...

$\displaystyle \varphi(x)= \sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}\ x^{n}$ (1)

... so that is $\displaystyle \sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}= \varphi(1)$. Introducing the gamma function, taking into account that is...

$\displaystyle (2n-1)!= \frac{2^{n}}{\sqrt{\pi}}\ \Gamma(n+\frac{1}{2})$ (2)

... the (1) becomes...

$\displaystyle \varphi(x)= \sqrt{\pi} \sum_{n=1}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+\frac{1}{2})}\ (\frac{x}{2})^{n}$ (3)

Now we consult the excellent library of the University of Bonn and here we find...

$\displaystyle \sum_{n=0}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+\frac{1}{2})}\ z^{n}= \frac{1}{\sqrt{\pi}\ (1-z)}\ (1+ \frac{\sqrt{z}\ \sin^{-1} \sqrt{z}}{\sqrt{1-z}}) $ (4)

... so that is...

$\displaystyle \sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}= 2\ (1+ \sin^{-1} \frac{1}{\sqrt{2}})-1= 1 + \frac{\pi}{2}$

Kind regards

$\chi$ $\sigma$
 
Last edited:
Krizalid said:
Compute the following series:

$$1 + \frac{{1 \times 2}}{{1 \times 3}} + \frac{{1 \times 2 \times 3}}{{1 \times 3 \times 5}} + \frac{{1 \times 2 \times 3 \times 4}}{{1 \times 3 \times 5 \times 7}} + \cdots .$$

The series can be written as

$\displaystyle \sum_{k \ge 1}\frac{k!}{(2k-1)!} = \sum_{k \ge 1}\frac{k!^2 2^k}{(2k)!} = \sum_{ k \ge 1}\frac{2^k}{\binom{2k}{k}} $

Consider the series

$\displaystyle \left(\sin^{-1}{x}\right)^2 = \sum_{k \ge 1}\frac{2^{2k-1}x^{2k}}{k^2 \binom{2k}{k}}$

Differentiating both sides gives$\displaystyle\frac
{2\sin^{-1}{x}}{\sqrt{1-x^2}} = \sum_{k \ge 1}\frac{2^{2k}x^{2k-1}}{k \binom{2k}{k}}$

Rearrange it as

$\displaystyle\frac
{x\sin^{-1}{x}}{\sqrt{1-x^2}} = \sum_{k \ge 1}\frac{2^{2k-1}x^{2k}}{k \binom{2k}{k}}$

Differentiating both sides we get

$\displaystyle \frac
{\sin^{-1}{x}+x\sqrt{1-x^2}}{(1-x^2)\sqrt{1-x^2}} = \sum_{k \ge 1}\frac{2^{2k}x^{2k-1}}{\binom{2k}{k}}$

Rearrange it as

$\displaystyle \frac
{x\sin^{-1}{x}+x^2\sqrt{1-x^2}}{(1-x^2) \sqrt{1-x^2}} = \sum_{k \ge 1}\frac{(2x)^{2k}}{\binom{2k}{k}}$

Put $x = \frac{1}{\sqrt{2}}$, then:

$\displaystyle 1+\frac{\pi}{2} = \sum_{k \ge 1}\frac{2^k}{\binom{2k}{k}}.$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top