Compute <z,w>: Formula & Result

  • Thread starter Thread starter squaremeplz
  • Start date Start date
  • Tags Tags
    Formula
squaremeplz
Messages
114
Reaction score
0

Homework Statement



Compute <z,w> for z = [ (1+i)/2 , (1-i)/2 ], w = [ i/sqrt(2) , -1/sqrt(2) ]

2. Equations

<z , w> = z1 * w1 + 2 * z2 * w2

where w1 and w2 have the conjugate sign over them.

The Attempt at a Solution




<z, w> = (1+i)/2 * (-i/sqrt(2)) + 2 * ((1-i)/2) (-1/sqrt(2))

= -sqrt(2)/4 + sqrt(2)/4 * i


Is the formula I used correct for this? Thanks!
 
Physics news on Phys.org
Hi Squaremeplease

I'm not sure what your formula is or why there is a 2 in it... did your formula come from somewhere, or are you supposed to use it for some reason?

the usual complex inner product is defined as
&lt;u,v&gt; = \sum u_i v_i*
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top