bomba923
- 759
- 0
Just four questions here
:
1) For a function f(x), \exists f''\left( x \right) for \left\{ {x|\left( { - \infty ,a} \right) \cup \left( {a,\infty } \right)} \right\}, and \mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty.
Then, is it true that
\mathop {\lim }\limits_{x \to a} f''\left( x \right) > 0 \, {?}
(...in the sense that always \exists \, \varepsilon > 0 such that \forall x \in \left[ {a - \varepsilon ,a + \varepsilon } \right] where x \ne a, f''\left( {x} \right) > 0, that is
)
--------------------------------------------------------------------------
2) And, if
\mathop {\lim }\limits_{x \to a} f\left( x \right) = - \infty, then
\mathop {\lim }\limits_{x \to a} f''\left( x \right) < 0 \, {?}, right?
If both statements are true, what's the name of the theorem stating them?
(or explaining them, I suppose)
---------------------------------------------------------------------------
3) Now, let f^{\left( n \right)} \left( x \right) represent the n'th derivative of f(x). If \mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty,
is it true that if \exists f^{\left( n \right)} \left( x \right),
then \mathop {\lim }\limits_{x \to a} f^{\left( n \right)} \left( x \right) > 0 \, {?}
--------------------------------------------------------========
4) Finally, if \mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty,
is it true that if \exists f^{\left( n \right)} \left( x \right),
then \mathop {\lim }\limits_{x \to a} f^{\left( n \right)} \left( x \right) = \infty \, {?}

1) For a function f(x), \exists f''\left( x \right) for \left\{ {x|\left( { - \infty ,a} \right) \cup \left( {a,\infty } \right)} \right\}, and \mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty.
Then, is it true that
\mathop {\lim }\limits_{x \to a} f''\left( x \right) > 0 \, {?}
(...in the sense that always \exists \, \varepsilon > 0 such that \forall x \in \left[ {a - \varepsilon ,a + \varepsilon } \right] where x \ne a, f''\left( {x} \right) > 0, that is

--------------------------------------------------------------------------
2) And, if
\mathop {\lim }\limits_{x \to a} f\left( x \right) = - \infty, then
\mathop {\lim }\limits_{x \to a} f''\left( x \right) < 0 \, {?}, right?
If both statements are true, what's the name of the theorem stating them?
(or explaining them, I suppose)
---------------------------------------------------------------------------
3) Now, let f^{\left( n \right)} \left( x \right) represent the n'th derivative of f(x). If \mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty,
is it true that if \exists f^{\left( n \right)} \left( x \right),
then \mathop {\lim }\limits_{x \to a} f^{\left( n \right)} \left( x \right) > 0 \, {?}
--------------------------------------------------------========
4) Finally, if \mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty,
is it true that if \exists f^{\left( n \right)} \left( x \right),
then \mathop {\lim }\limits_{x \to a} f^{\left( n \right)} \left( x \right) = \infty \, {?}
Last edited: