Concentric Wire Homework: Calculating Potential, Capacitance, Charge & Energy

  • Thread starter Thread starter Queequeg
  • Start date Start date
  • Tags Tags
    Wire
AI Thread Summary
The discussion focuses on calculating various electrical properties of a concentric wire system, including potential difference, capacitance, charge, and energy storage. The potential difference is derived from integrating the electric field, leading to a formula involving charge density and the logarithm of the radii. The capacitance is calculated using the relationship between charge and potential, while stored charge and energy are derived from the capacitance and potential difference. The impact of changing the insulator from vacuum to polystyrene is addressed, noting changes in capacitance and energy due to the dielectric constant. Finally, the fraction of power dissipated in the inner wire is discussed, emphasizing that only the inner conductor dissipates energy while the outer conductor remains grounded.
Queequeg
Messages
24
Reaction score
0

Homework Statement



A concentric wire of resistivity ##\rho##,length ##L## has an inner radius ##R_1## and outer radius ##R_2## and charge density ##\lambda##. A current ##I## flows down the inner wire while the outer conductor is grounded, ##V=0##.

a) Calculate the potential difference between the inner and outer wire.

b) Find the capacitance of the wire.

c) If the potential difference between the inner and outer conductor is ##V##, calculate the total charge stored on the cable.

d) Calculate the amount of stored energy in the cable.

e) If the insulator changes from a vacuum to polystyrene, what is the new stored energy, capacitance, and charge density?

f) What fraction of the power supplied to the cable is dissipated in the cable wire itself?

Homework Equations



##E=\frac{\lambda}{2\pi ε_0 r},
C = \frac{Q}{V},
Q = \lambda * L,
U = \frac{1}{2} CV^2,
P = IV = I^2 R##

The Attempt at a Solution



a) I integrate the electric field from the inner to outer cable to get ##V = \frac{\lambda}{2\pi ε_0}\ln{\frac{R_1}{R_2}}##

b)## Q = \lambda L## so ##C = \frac{Q}{V} = \frac{Q}{\frac{\lambda}{2\pi ε_0}\ln{\frac{R_1}{R_2}}} = \frac{2πε_o L}{\ln{\frac{R_1}{R_2}}}##

c) ##Q = CV = V * \frac{2πε_o L}{\ln{\frac{R_1}{R_2}}}##

d) Just ## U = \frac{1}{2} CV^2##

e) Polystyrene has a dielectric constant of 2.6, so the new capacitance is ##κC##, the energy is ##κU## and the charge density is the same, ##\lambda##

f) Not too sure, I'm guessing the total power provided is ##P = I\Delta V## and the power in the inner wire is ##I^2 R## so the fraction is just ##\frac{IR}{V}## where ##R=\frac{\rho L}{A}##?
 
Physics news on Phys.org
I feel you have it right.
You might benefit from a drawing of the system, to make sure the geometric is totally clear.
You need to explicit the cross-section A.
My understanding is that the current flows along the central conductor.
Its radius is R1, which determines its cross-section.
The outer conductor is probably grounded "everywhere" , V=0 all along its length, therefore it does not dissipate energy.
 
  • Like
Likes 1 person
Doesn't the inner wire dissipate energy though, so the fraction supplied to the cable is just all of the power dissipated in the inner wire, using ##I^2 R##?

Unless by "cable wire" that's the outer conductor in which case I see no power is dissipated.

Thanks
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top