First a remark: we may assume that A, B and C are independent random variables (this may help a lot).
<br />
E [ B | A < B < C ] = \int_{0}^\infty E [ B \, | \, A < B < C, A = a ] \; f_{A} ( a ) \; da <br />
<br />
= \int_{0}^\infty \int_{0}^\infty E [ B \, | \, A < B < C, A = a, C=c ] \; f_{A} ( a ) \; f_{C} ( c ) \; da \; dc.<br />
(Along with all that follows, this integral is only to be considered over R_+^2 and for c>a.)
<br />
= \int_{0}^\infty \int_{0}^\infty E [ B \, | \, a < B < c, A = a, C=c ] \; f_{A} ( a ) \; f_{C} ( c ) \; da \; dc<br />
(by independence)
<br />
= \int_{0}^\infty \int_{0}^\infty E [ B \, | \, a < B < c ] \; f_{A} ( a ) \; f_{C} ( c ) \; da \; dc<br />
We want to compute E [ B \, | \, a < B < c ].
First note that
E [ B \, | \, a < B < c ] = \frac{ \int_a^c t f_{B} (t) dt }{P( B \in [a,c])}.
We have\int_a^c t f_{B} (t) dt = ... = (a e^{- \lambda_B a} - c e^{- \lambda_B c}) + \frac{1}{\lambda_B} ( e^{- \lambda_B a} - e^{- \lambda_B c} )
and
P(B \in [a,c]) = F_B (c) - F_B (a) = ... = e^{- \lambda_B a} - e^{- \lambda_B c}.
Hence
E [ B \, | \, a < B < c ] = \frac{ (a e^{- \lambda_B a} - c e^{- \lambda_B c}) + \frac{1}{\lambda_B} ( e^{- \lambda_B a} - e^{- \lambda_B c} ) }{e^{- \lambda_B a} - e^{- \lambda_B c}},
E [ B \, | \, a < B < c ] = \frac{ a e^{- \lambda_B a} - c e^{- \lambda_B c} }{e^{- \lambda_B a} - e^{- \lambda_B c}} + \frac{1}{\lambda_B}.
So
<br />
E [ B | A < B < C ] = \int_{0}^\infty \int_{0}^\infty \left( \frac{ a e^{- \lambda_B a} - c e^{- \lambda_B c} }{e^{- \lambda_B a} - e^{- \lambda_B c}} + \frac{1}{\lambda_B} \right) \; f_{A} ( a ) \; f_{C} ( c ) \; da \; dc<br />
<br />
= \int_{0}^\infty \int_{0}^\infty \left( \frac{ a e^{- \lambda_B a} - c e^{- \lambda_B c} }{e^{- \lambda_B a} - e^{- \lambda_B c}} \right) \lambda_A e^{- \lambda_A a} \; \lambda_C e^{- \lambda_C c} \; da \; dc + <br />
<br />
\int_{0}^\infty \int_{0}^\infty \frac{1}{\lambda_B} \lambda_A e^{- \lambda_A a} \; \lambda_C e^{- \lambda_C c} \; da \; dc<br />Here's my problem: I can't compute the first of these integrals... And even then I'm not sure if what I'm doing here is correct... Is my calculation right, or is it wrong!? Is there perhaps a better way to calculate this? Etc.