Confidence Interval Calculation for Sample Mean: 95% Confidence Level

  • Thread starter Thread starter JOhnJDC
  • Start date Start date
  • Tags Tags
    intervals
JOhnJDC
Messages
35
Reaction score
0

Homework Statement



I know the sample size n, the observed sample mean x, and the observed sample standard deviation s. I need to determine a value v such that I'm 95% confident that the average is v or less.

The Attempt at a Solution



If I calculate the 95% confidence interval, then I know that 95% of the resulting intervals will contain the true mean. Does the upper bound of the 95% confidence interval also tell me that this mean will be less than or equal to the upper bound with 95% confidence? Am I thinking about this the wrong way? Thanks
 
Last edited:
Physics news on Phys.org
I think the answer is to construct the 90% confidence interval using the data given. Because this interval will be centered on the observed sample mean x, only 5% of averages will be above the upper bound of this interval. Therefore, I can be 95% confident that the upper bound is the value v that I'm looking for.

B% CI = [x-(1.645*s)/sqrt(n), x+(1.645*s)/sqrt(n)]

So, v = x+(1.645*s)/sqrt(n).

Does that logic work?
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top