I Confusion about initial states and coherent states

valanna
Messages
9
Reaction score
0
I've found online that the coherent state of the harmonic oscillator is
|\alpha \rangle = c \sum_{n=0}^\infty \frac{\alpha^n}{\sqrt{n!}} | n\rangle
where
|n\rangle = \frac{(a^\dagger)^n}{\sqrt{n!}} |0\rangle
and |0> is called the initial state.
I've some code where I need to have this initial state for j=4, so it should be a 9 by 1 vector right?
How is this initial state found?
 
Physics news on Phys.org
valanna said:
t should be a 9 by 1 vector right?
Harmonic oscillators need an infinite dimensional Hilbert space, 9 dimensions do no suffice. The formula you wrote is for unpolarized light. In the case of polarization (where j makes sense) you need a Fock space over a 2-mode 1-particle Hilbert space, and the formula gets more complicated.
 
  • Like
Likes valanna
A. Neumaier said:
Harmonic oscillators need an infinite dimensional Hilbert space, 9 dimensions do no suffice. The formula you wrote is for unpolarized light. In the case of polarization (where j makes sense) you need a Fock space over a 2-mode 1-particle Hilbert space, and the formula gets more complicated.

So the |0> is in Hilbert space? If there were a coherent state that was in a space where j=4, is there a method to find |0>?
 
##|0\rangle## is the ground state (no oscillation, e.g., no light) of a harmonic oscillator Hamiltonian, in the space ##L^2(\Rz)## (or the equivalent Fock space).
valanna said:
in a space where j=4
What do you mean by this? A 1-particle space with angular momentum 4 but position and momentum ignored? In this case, the appropriate coherent states are very different - you need angular momentum coherent states.
 
  • Like
Likes valanna
A. Neumaier said:
##|0\rangle## is the ground state (no oscillation, e.g., no light) of a harmonic oscillator Hamiltonian, in the space ##L^2(\Rz)## (or the equivalent Fock space).

What do you mean by this? A 1-particle space with angular momentum 4 but position and momentum ignored? In this case, the appropriate coherent states are very different - you need angular momentum coherent states.

Thank you, Those are what I'm looking at, I suppose I made the mistake in thinking the coherent state for the harmonic oscillator was the same because its equation is a similar format to the one I'm looking at.
The main difference is that the state I need to find is represented by |j,j> but I'm having trouble finding how that state is actually found. I see it used or similar states used but no value or formula is ever given. Is it something trivial I'm just missing or does it have no actual value?
Thank you very much for your help
 
valanna said:
I've found online that the coherent state of the harmonic oscillator is
|\alpha \rangle = c \sum_{n=0}^\infty \frac{\alpha^n}{\sqrt{n!}} | n\rangle
where
|n\rangle = \frac{(a^\dagger)^n}{\sqrt{n!}} |0\rangle
and |0> is called the initial state.
I've some code where I need to have this initial state for j=4, so it should be a 9 by 1 vector right?
How is this initial state found?
##|0 \rangle## is not an arbitrary initial state but the ground state of the harmonic oscillator. It's just defined by ##\hat{a}|0 \rangle=0##. It's of course also a coherent state with ##\alpha=0##.

The initial state of a quantum system can be anything. It's determined by the preparation of the system at the initial time.
 
  • Like
Likes valanna
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top