Understanding the Confusion in Stoke's Theorem Formulas

  • Thread starter Thread starter physstudent1
  • Start date Start date
  • Tags Tags
    Confusion Theorem
physstudent1
Messages
267
Reaction score
1

Homework Statement



Hello, this isn't a specific problem but a part I am confused about in Stoke's theorem. In my text the section on Line integrals (if C(t) is the parameterization of the curve) as the integral of F(C(t))*C'(t) but for vector fields the formula becomes the integral of F(C(t))*||C'(T)|| now I understand this but when I got to Stoke's theorem it says The line integral of the boundary of a surface is equal to the surface integral of the curl vector. However In every example I have seen in my text the F is a vector field so I figured that the line integral should be defined as the integral of F(C(t))*||C'(T)|| but it is the integral of F(C(t))*C'(t) can anyone clear this up for me please if you don't understand my question please ask I will try to reword it more clearly! Thanks!

Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
physstudent1 said:
Hello, this isn't a specific problem but a part I am confused about in Stoke's theorem. In my text the section on Line integrals (if C(t) is the parameterization of the curve) as the integral of F(C(t))*C'(t)
Ok so this is for general line integrals of vector functions.

but for vector fields the formula becomes the integral of F(C(t))*||C'(T)||
This is the formula for line integrals of scalar fields, not vector fields.

However In every example I have seen in my text the F is a vector field so I figured that the line integral should be defined as the integral of F(C(t))*||C'(T)|| but it is the integral of F(C(t))*C'(t) can anyone clear this up for me please if you don't understand my question please ask I will try to reword it more clearly! Thanks!
As above.
 
thanks a lot for clearing this up

one more thing, just exactly how could I tell the differnece between a scalar function and a vector function?
 
Eg.
A scalar function of 3 variables gives you a single (scalar) value f(x,y,z) = x + y + z for every point (x,y,z).

A vector function of 3 variables gives you a vector: \mathbf{F}(x,y,z) = x \mathbf{i} + y\mathbf{j} + z\mathbf{k} for every point (x,y,z)
 
oh that makes sense thanks the other definitions I found online I couldn't really understand but this clears it up well.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top