amjad-sh
- 240
- 13
When we deal with an infinite-dimensional basis,the normalization condition of this basis becomes <x|x'>=δ(x-x')(here for example the position basis).Same thing for momentum eigenstates <p|p'>=δ(p-p').
Lets look now on the eigenvalue problem of the momentum operator:
\hat p | p \rangle =p | p\rangle
projecting \langle x | on both sides this will yield to a differential equation of the form :
-iħ\frac{d\psi_{p}(x)}{dx}=p\psi_{p}(x)
where \psi_{p}(x)=\langle x | p\rangle
this will finally yield that \psi_{p}(x)=\frac{1}{√(2πħ)}e^{ipx/ħ}
so | p \rangle \leftrightarrow \frac{1}{√2πħ} (e^{ ipx_{1} } | x_{1} \rangle +e^{ ipx_{2} } |x_{2} \rangle+ . . . . . +e^{ ipx_{n} } | x_{n} \rangle) where n goes to infinity and x_{n}=x_{n-1}+dx
but doesn't this violate<x|x'>=δ(x-x')? since if we project,for example,<x1| on |p> and we take by consideration δ(x-x')=<x|x'>, the result will be <x|p>=∞ and not \frac{1}{√2πħ}e^{ ipx_{1} } ?
Lets look now on the eigenvalue problem of the momentum operator:
\hat p | p \rangle =p | p\rangle
projecting \langle x | on both sides this will yield to a differential equation of the form :
-iħ\frac{d\psi_{p}(x)}{dx}=p\psi_{p}(x)
where \psi_{p}(x)=\langle x | p\rangle
this will finally yield that \psi_{p}(x)=\frac{1}{√(2πħ)}e^{ipx/ħ}
so | p \rangle \leftrightarrow \frac{1}{√2πħ} (e^{ ipx_{1} } | x_{1} \rangle +e^{ ipx_{2} } |x_{2} \rangle+ . . . . . +e^{ ipx_{n} } | x_{n} \rangle) where n goes to infinity and x_{n}=x_{n-1}+dx
but doesn't this violate<x|x'>=δ(x-x')? since if we project,for example,<x1| on |p> and we take by consideration δ(x-x')=<x|x'>, the result will be <x|p>=∞ and not \frac{1}{√2πħ}e^{ ipx_{1} } ?