Congruence of all integers n, 4^n and 1 +3n mod(9)?

  • Thread starter Thread starter mgiddy911
  • Start date Start date
  • Tags Tags
    Integers
mgiddy911
Messages
331
Reaction score
0
I just took a number theory midterm, the professor had a question the that said
"Show by induction that for all integers n, 4^{n} is congruent to 1 +3n mod(9).

Now am I crazy or did the professor probably mean to say integers greater or equal to 0, or for any natural number n, ...

couldn't you show a counter example for instance n = -2, such that the congruence is false?
 
Physics news on Phys.org
mgiddy911 said:
I just took a number theory midterm, the professor had a question the that said
"Show by induction that for all integers n, 4^{n} is congruent to 1 +3n mod(9).

Now am I crazy or did the professor probably mean to say integers greater or equal to 0, or for any natural number n, ...

couldn't you show a counter example for instance n = -2, such that the congruence is false?

In number theory, it's not unusual to assume that variables are natural numbers unless otherwise specified. I don't really want to think about negative powers here, since:
* There is no multiplicative inverse over natural numbers or integers
* There is a multiplicative inverse over real numbers (x not 0)
* There is sometimes a multiplicative inverse over Zp

and there could be reason to work over any of these.
 
The only residues are 1,4,7, so even if we use the inverses, it doesn't matter since

\frac{1}{4}\equiv 7 mod 9
 
When you think about it, as a general rule, if a and Mod b are such that, a, b positive integers, and (a,b) =1, (they are relatively prime ) Then the powers of a Mod b form a cyclic group, i.e., every power of a has an inverse in the group.
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top