Connection between polynomials and groups

cduston
Messages
6
Reaction score
0
Hey Everyone,
I'm reading a paper by Claude LeBrun about exotic smoothness on manifolds and he is talking about a connection between polynomials and groups that I am not familiar with (or at least I think that's what he's talking about). He's creating a line bundle (which happens to be O(2)) over the complex projective space CP^2 and he states that the "elements n of the line bundle are degree 2" (not actually a direct quote, but I'm almost positive that's what he's trying to say). So what this says to me is that there is some connection between the degree 2 polynomials (like p(x)=a+b*x + c*x^2) and the group of all 2x2 orthogonal matricies. I've been running this around in my head for a few days and I can't come up with a good explanation, so could someone help me out?

Thanks so much!
 
Physics news on Phys.org
Are you sure O(2) is denoting an orthogonal group, and is not instead supposed to be the twisted sheaf \mathcal{O}(2)? This latter interpretation sounds better to me, because if my understanding of algebraic geometry is correct, \mathcal{O}(2) on the projective plane is supposed to be (roughly speaking) the set of all homogenous degree 2 polynomials in three variables.
 
Last edited:
Oh no...I think you are right, that's what the Os look like in the paper. I also had a conversation with my advisor about this but it was over e-mail, so I'm sure she wrote O(2) when she really meant (that crazy italic O)(2). Ok, it's back to Hatcher to learn about twisted sheafs! If anyone else has any insights they would be appreciated, but I think Hurkyl has the right idea. Thanks!
 
Last edited:
This is a quickie, and possibly wrong since it is what I think of but I'm no geometer.

The projective plane is just two copies of the affine plane glued together. You can think of the coords on each plane as, say,

k[x,y] and k[u,v]

We glue them, roughly speaking by sending x to u, and y to v^-n, you think of this as twisting n times (n can be positive or negative here), and this is O(n). (The font is mathcal, I think).
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top