Conservation of Energy confusion

AI Thread Summary
The discussion revolves around a physics problem involving the conservation of energy as a dog leaps off a cliff. The initial attempt at solving the problem incorrectly assumes the height of the ledge is 4 m, rather than recognizing it is 4 m below the cliff's height. This misunderstanding leads to an incorrect calculation of potential energy (PE) and kinetic energy (KE). Clarification indicates that using the correct height in the energy conservation equation will yield the right answer. The key takeaway is that accurately defining the heights involved is crucial for applying the conservation of energy principle correctly.
kisbester
Messages
2
Reaction score
0

Homework Statement



A dog takes a running horizontal leap off a 10 m cliff and jumps with a speed of 3 m/s onto a ledge 4 m below the height of the cliff. With what speed does he land on the ledge?

Homework Equations


KEi + PEi = KEf + PEf
1/2mvi2 + mghi = 1/2mvf2 + mghf

The Attempt at a Solution


Attempt #1:

(masses cancel, g ≈ 10m/s2)

1/2(3m/s)2 + (10m/s2)(10m) = 1/2vf2 + (10m/s2)(4m)

1/2(9)+100 = 1/2vf2 + 40

4.5 + 60 = 1/2vf2

2(64.5) = 129 = vf2

\sqrt{}129 = vf

vf = 11.36

This is not the correct answer, however, upon looking at the solution the only difference is that they make the original height equal to zero and the final height equal to -4. This of course excludes PE from the first half of the equation. I realize that it would have been simpler for me to do the problem in that way. I don't, however, understand why it doesn't work to do it the way that I did it. Shouldn't it only be the difference in PE that matters? Should the final height have been something different than 4 for my version to work? Any clarification would be greatly appreciated.
 
Physics news on Phys.org
kisbester said:
This is not the correct answer, however, upon looking at the solution the only difference is that they make the original height equal to zero and the final height equal to -4. This of course excludes PE from the first half of the equation. I realize that it would have been simpler for me to do the problem in that way. I don't, however, understand why it doesn't work to do it the way that I did it. Shouldn't it only be the difference in PE that matters? Should the final height have been something different than 4 for my version to work? Any clarification would be greatly appreciated.
Your error is thinking that the height of the ledge is 4 m. Note that the ledge is stated to be 4 m below the cliff, not 4 m from the bottom.

If you compare your calculation to the solution given, you'll see that the difference in PE is not the same.

Get the correct height of the ledge and your method is fine.
 
Ugh, thank you so much.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top