Conservation of Energy - Gear Box vs. CVT

AI Thread Summary
The discussion focuses on modeling a snowmobile's mechanical system using differential equations for both a gear box and a Continuous Variable Transmission (CVT). The initial equations for the gear box are presented, with an emphasis on the relationship between the angles of the shafts and the gear ratio. Key questions arise regarding the impact of a CVT on the differential equations, particularly how to incorporate changing gear ratios and energy conservation principles. The potential for transient effects during gear changes in a fixed gear box is also questioned, alongside the need to account for losses in both systems. Lastly, the user seeks recommendations for literature on modeling gear boxes and CVTs.
KingBongo
Messages
23
Reaction score
0
I am working on a mechanical model for a Snowmobile and trying to figure out what the differential equations becomes when you have a CVT (Continuous Variable Transmission) instead of a Gear Box.

Assume that you have two shafts connected with each another through a (lossless) and stiff gear box, consisting of two gears only. If I understand it correctly, the differential equations describing this system are

J1*d2(Theta1)/dt2= M1 + g*M
J2*d2(Theta2)/dt2= M2 - 1/g*M

where Ji, i ={1,2}, are the Moment of Inertia's of the shafts (including gears) respectively and Mi, i={1,2}, are torques acting on the corresponding shafts (friction, external torques, a.s.o.). M is an auxiliary Torque describing the coupling between the two axes, and of course g is the gear ratio. Thetai, i={1,2} of course are the corresponding angles. We also assume that dg/dt is constant (except when changing gear instantly and re-initialize the system).

By using the fact that Theta2 = g*Theta1 (+ Constant), M can be eliminated and the equations above be reduced to a single equation, not shown here.

Questions:
1. Is everything above correct?

2. How will the approach change when the shafts are connected through a CVT and therefore dg/dt is NOT equal to zero? I understand conservation of energy must be used, but how?

3. If you have a fixed gear box and change the gear (instantly), will there be any transient effects, like Dirac pulses? This is mostly neglected in the literature, so I do not know if there will be any transients or not.

4. How do you extend the models for fixed gear box and CVT in order to include losses inside the gear box?

5. Are there any good books for modeling gear boxes and CVTs?

Help is really appreciated! Please...
 
Last edited:
Engineering news on Phys.org
This can't be happening. Doesn't anyone have the slightest clue? I thought this would be an easy problem, :)
 
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top