Bashyboy
- 1,419
- 5
Homework Statement
Consider an elastic collision between two bodies of equal mass, one of which is initially at rest. Let their velocities be \vec{v_1} and \vec{v_2} = \vec{0} before the collision, and \vec{v_1 '} and \vec{v_2 '} after the collision. Write down the vector equation representing conservation of momentum and the scalar equation which expresses that the collision is elastic. Use these to prove that \vec{v_1 '} and \vec{v_2 '} are orthogonal.
Homework Equations
The Attempt at a Solution
If the collision is elastic, then KE = KE'.
m1 = m2 = m
\vec{p} = \vec{p'}
If the two velocity vectors are orthogonal, then \vec{v_1 '} \cdot \vec{v_2 '} = 0.
Conservation of energy:
\frac{1}{2} mv_1^2 = \frac{1}{2} m v_1^{'2} + \frac{1}{2} m v_2^{'2}
v_1^2 = v_1^{'2} + v_2^{'2}, which can be written as | \vec{v_1} |^2 =| \vec{v_1 '} |^2 + | \vec{v_2 '} |^2, although I am not sure of how helpful this will be.
Conservation of momentum:
m \vec{v_1} + \vec{0} = m \vec{v_1 '} + m \vec{v_2 '}
\vec{v_1} = \vec{v_1 '} + \vec{v_2 '}
Taking the magnitude, | \vec{v_1} | = | \vec{v_1 '} |+ | \vec{v_2 '} |; again, I am not certain of how helpful this will be.
______________________________________________________
Up to this point, I am not sure as to how to proceed. Could someone provide me with a hint?