Conserved quantity for a particle in Magnetic Field

Siberion
Messages
31
Reaction score
1

Homework Statement



Consider a particle of mass m and electric charge e moving in a uniform magnetic field given by B = Bẑ. Then the Lagrangian is given by:

L = \frac{m}{2}(x'^2 + y'^2 + z'^2) + \frac{Be}{2}(xy' - yx')

Prove that Q={L} \cdot{B} + \frac{e}{2}((r \times B)(r \times B)) is a constant of motion, where L = r x p is the angular momentum.

The Attempt at a Solution



I proceeded to calculate the conjugated momenta,

Px = mx' - ey/2
Py = my' + ex/2
Pz = mz'

Then I calculated the Hamiltonian. A lot of terms vanished and I ended up with just kinetic energy.

H = \frac{m}{2} (x'^2 + y'^2 + z'^2) which is a conserved quantity.

I was expecting to also end up with a term for the potential. Is this caused by the fact that the magnetic field does no work on the particle so it doesn't affect the total energy?

I expressed the hamiltonian in terms of the generalized momenta:

H= \frac{m}{2}(Px^2 + Py^2 + Pz^2 + \frac{(Be^2)(x^2+y^2)}{4}+eB(yPx-xPy))I tried re-arranging Q in terms of the vector position r = xî + yĵ + zk , while p would correspond to m(x' + y' + z')

After doing dot and cross product operations, I ended up with the following expression for Q:

Q = (xy' - yx')B + (e{B^2}/2) (x^2 + y^2)

which doesn't depend on z nor z', which gives me trouble when relating terms to the hamiltonian.

Is there any flaw in my procedure? I've tried rearranging terms, playing with algebra, but I don't come up with anything satisfactory.

Also, is the quantity Q a well known quantity? Is there something too obvious I'm missing here?

Thanks for your help. It is really, really appreciated.
 
Last edited:
Physics news on Phys.org
Siberion said:
Then I calculated the Hamiltonian. A lot of terms vanished and I ended up with just kinetic energy.

H = \frac{m}{2} (x'^2 + y'^2 + z'^2) which is a conserved quantity.

I was expecting to also end up with a term for the potential. Is this caused by the fact that the magnetic field does no work on the particle so it doesn't affect the total energy?

I expressed the hamiltonian in terms of the generalized momenta:

H= \frac{m}{2}(Px^2 + Py^2 + Pz^2 + \frac{(Be^2)(x^2+y^2)}{4}+eB(yPx-xPy))

In a uniform magnetic field, the scalar potential ##\phi## can be chosen to be zero. The vector potential ##\textbf{A}## can be chosen as ##\textbf{A} = \textbf{B} \times \textbf{r}/2 ##, so you could express the Hamiltonian in terms of the vector potential if you wished.

I tried re-arranging Q in terms of the vector position r = xî + yĵ + zk , while p would correspond to m(x' + y' + z')

After doing dot and cross product operations, I ended up with the following expression for Q:

Q = (xy' - yx')B + (e{B^2}/2) (x^2 + y^2)

which doesn't depend on z nor z', which gives me trouble when relating terms to the hamiltonian.

Is there any flaw in my procedure? I've tried rearranging terms, playing with algebra, but I don't come up with anything satisfactory.

It all looks ok to me. Try taking the time derivative of ##Q## and see if it equals zero.
 
Thanks a lot TSny, according to what I calculated, using E-L equations, its derivative indeed equals to zero. I got lost trying to rearrange the Hamiltonian, I should have checked the derivative of Q at first.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top