Constant Jacobian transformation of an inertial frame

hwl
Messages
2
Reaction score
0
Suppose we do a constant Jacobian transformation (which is not Lorentz) of a SR (inertial)
frame, by using four linear change of variables equations. This defines an apparent field with a
constant metric (which is not the SR metric) in which there is relative acceleration of separation.
From the geodesic - metric equation we see that the acceleration vector depends on the first
partial derivatives of this constant metric and so at least some of these derivatives must be
non-zero. How can this be true?
Can anyone shed light on this puzzle?
 
Physics news on Phys.org
hwl said:
the acceleration vector depends on the first partial derivatives of this constant metric and so at least some of these derivatives must be non-zero.
Why would the first partial derivatives of a constant metric be nonzero?
 
The acceleration vector in this field is NON-ZERO. But according to the geodesic-metric equation it should be
ZERO because the metric is constant with (presumably !) zero partial derivatives. The only way we can
reconcile these two conflicting values is if these derivatives were non-zero. How else can we explain this
contradiction ?
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top