Constant Jacobian transformation of an inertial frame

hwl
Messages
2
Reaction score
0
Suppose we do a constant Jacobian transformation (which is not Lorentz) of a SR (inertial)
frame, by using four linear change of variables equations. This defines an apparent field with a
constant metric (which is not the SR metric) in which there is relative acceleration of separation.
From the geodesic - metric equation we see that the acceleration vector depends on the first
partial derivatives of this constant metric and so at least some of these derivatives must be
non-zero. How can this be true?
Can anyone shed light on this puzzle?
 
Physics news on Phys.org
hwl said:
the acceleration vector depends on the first partial derivatives of this constant metric and so at least some of these derivatives must be non-zero.
Why would the first partial derivatives of a constant metric be nonzero?
 
The acceleration vector in this field is NON-ZERO. But according to the geodesic-metric equation it should be
ZERO because the metric is constant with (presumably !) zero partial derivatives. The only way we can
reconcile these two conflicting values is if these derivatives were non-zero. How else can we explain this
contradiction ?
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top