This proof I think is related to our construction of R in class using equivalences classes of Cauchy sequences:(adsbygoogle = window.adsbygoogle || []).push({});

Let a[itex]\in[/itex]R, then there exists a sequence b s.t. {b_n}[itex]\in[/itex]Q for all n[itex]\in[/itex]N and lim {b_n} = x.

Here's my attempt:

Let [{b_n}][itex]\in[/itex]R be the equivalence class of all Cauchy sequences that converge to x. Thus, [{b_n}] = x. Let {b_n}[itex]\in[/itex][{b_n}]. Then, [itex]\exists[/itex]r[itex]\in[/itex]Q+ and n[itex]\in[/itex]N s.t. [itex]\forall[/itex]n>N, |b_n -x|<r. Thus, lim {b_n} = x.

I feel like I'm missing something, as if I missed a step somewhere. Ideas?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Construction of R question

**Physics Forums | Science Articles, Homework Help, Discussion**