Contact Stress Problem: Validate Nylon Clamp & Steel Tube

  • Thread starter Thread starter Jesper Hellmann
  • Start date Start date
  • Tags Tags
    Contact Stress
AI Thread Summary
The discussion centers on validating a nylon clamp under a load of 166kN on a steel tube, where the user reports a significant discrepancy between analytical calculations (145MPa) and FEM results from ANSYS (30MPa). Participants suggest sharing the MATLAB code for better insights into the calculations. There is a recommendation to conduct a simplified finite element analysis (FEA) in MATLAB to check the results against ANSYS, indicating potential setup issues with the ANSYS model. The conversation highlights the importance of verifying analytical methods and FEA setups to ensure accurate stress validation.
Jesper Hellmann
Messages
2
Reaction score
0
Hi All

I am trying to validate a nylon (PA6 Guss) clamp which has a load of 166kN on a steel tube. I am only interested in validating the clamp.
My analytical (MatLab-Octave) calculations give me a peak Von Misses stress of about 145MPa
contact stress.png

When comparing to FEM in ANSYS I only get about 30MPa
Can someone shed light on why there is such a big difference?
contact stress_b.png


-Jesper Hemmlann
M.Sc. Applied Mechanics
 
Engineering news on Phys.org
Jesper Hellmann said:
I am trying to validate a .
My analytical (MatLab-Octave) calculations give me a peak Von Misses stress of about 145MPa

When comparing to FEM in ANSYS I only get about 30MPa
Can someone shed light on why there is such a big difference?

-Jesper Hemmlann
M.Sc. Applied Mechanics
Who knows? Show your code and we might able to comment.
 
%%%Contact stress
clear all
clc
close all
graphics_toolkit('gnuplot')

%%%Material parameters
%Youngs Modulus
E_1=2.62*10^9
E_2=213*10^9
%Poisson ratio
nu_1=0.34
nu_2=0.3%Cylinder radius
%OBS (R_2= infity for a flat plate)
%OBS (a cylindrical groove is a cylinder with a negative radius)
R_1=0.055275
R_2=0.055775
L=0.2

%Force
F=166000%Contact area
b=sqrt(4*F*((1-nu_1^2)/E_1+(1-nu_2^2)/E_2)/(pi*L*(1/R_1+1/R_2)))

%maximum pressure
P_max=2*F/(pi*b*L)%stresses
i=50
z=0.000000001:(b*3)/i:(b*3);

for n=1:i
sigma_1(n)=-2*nu_1*P_max*(sqrt(z(n)^2/b^2+1)-abs(z(n)/b));
sigma_2(n)=-P_max*((2-(z(n)^2/b^2+1)^-1)*sqrt(z(n)^2/b^2+1)-2*abs(z(n)/b));
sigma_3(n)=-P_max*(sqrt((z(n)^2/b^2)+1)^(-1));

tau_1(n)=abs((sigma_2(n)-sigma_3(n))/2);
tau_2(n)=abs((sigma_1(n)-sigma_3(n))/2);
tau_3(n)=abs((sigma_1(n)-sigma_2(n))/2);
sigma_vM(n)=sqrt(sigma_1(n)^2+sigma_2(n)^2+sigma_3(n)^2-sigma_1(n)*sigma_2(n)-sigma_2(n)*sigma_3(n)-sigma_3(n)*sigma_1(n)+3*(tau_1(n)^2+tau_2(n)^2+tau_3(n)^2));
end

figure
hold on

MPa=1/10^6;
plot(z,abs(sigma_1)*MPa,'-ko', "markersize", 3)
plot(z,abs(sigma_2)*MPa,'-m^', "markersize", 3)
plot(z,abs(sigma_3)*MPa,'-.r*', "markersize", 3)
plot(z,(tau_1)*MPa,'--yv', "markersize", 3)
plot(z,(tau_2)*MPa,':bs', "markersize", 3)
plot(z,(tau_3)*MPa,'-.go', "markersize", 3)
plot(z,sigma_vM*MPa,'-bv',"markersize", 3)



legend('\sigma_x', '\sigma_y', '\sigma_z', '\tau_1','\tau_2','\tau_3','\sigma_{vM}', "location",
"northeast");
xlabel('depth of surface [m]')
ylabel('Stress [MPa]')
title('Cylinder contact stress on clamp')
grid on

%Displacement in the center of the 2 cylinders
delta_c=2*F*(1-nu_1^2)/(pi*L*E_1)*(2/3+log(4*R_1/b)+log(4*R_2/b))*(1000)
 
I don't know ansys and have never actually done an fea but I know you can set one up in MATLAB so maybe try to do a simplified fea in MATLAB to see if your answers get closer? That would only confirm your ansys isn't setup right, though, if you know 30 isn't right
 
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top