B Containing a plasma with a oscillating cusp?

chandrahas
Messages
72
Reaction score
2
I've recently learned that conductors can achieve stability when placed in an alternating electric field. This is because of Lenz's law. So I was wondering if we could levitate a conductor and stabilize it, can we do the same thing with a plasma?

If we can create a magnetic cusp, but oscillate the current fast enough, can we do this in theory?

To me it looks like we can't because it is not tightly bound together. Even then, we still have currents induced right? If that's the case, how efficient or inefficient would this method be?

Thanks for the replies.
 
Physics news on Phys.org
Yeah, but with magnetic fields. This trap depends on induction currents in the conductor instead of electric force.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top