Continuity ##f:\mathbb_{R}^3 \to \mathbb_{R}## with Lipschitz

Click For Summary
SUMMARY

The discussion focuses on proving the continuity of the function f(x,y,z) = xyz using the Lipschitz condition. The Lipschitz condition is defined as |f(x,y,z) - f(x0,y0,z0)| ≤ C ||(x,y,z) - (x0,y0,z0)||, where C is a constant. Participants analyze the inequality and suggest that the constant C must be independent of the variables x, y, and z. They also discuss the use of norms, specifically the 1-norm versus the 2-norm, and conclude that f(x,y,z) is Lipschitz continuous by demonstrating that it can be expressed as the product of two Lipschitz functions.

PREREQUISITES
  • Lipschitz continuity and its mathematical definition
  • Understanding of norms in R^3, specifically 1-norm and 2-norm
  • Basic principles of mathematical induction
  • Knowledge of continuity in multivariable functions
NEXT STEPS
  • Study the properties of Lipschitz continuous functions in multivariable calculus
  • Learn about different norms and their implications in continuity proofs
  • Explore mathematical induction techniques in proving continuity
  • Investigate the relationship between Lipschitz continuity and uniform continuity
USEFUL FOR

Mathematics students, educators, and researchers interested in real analysis, particularly those studying continuity and Lipschitz conditions in multivariable functions.

Felafel
Messages
170
Reaction score
0

Homework Statement



Prove
## f(x,y,z)=xyw## is continuos using the Lipschitz condition

Homework Equations



the Lipschitz condition states:
##|f(x,y,z)-f(x_0,y_0,z_0)| \leq C ||(x,y,z)-(x_0,y_0,z_0)||##
with ##0 \leq C##

The Attempt at a Solution



##|xyz-x_0y_0z_0|=|xyz-x_0y_0z_0+x_0yz-x_0yz|\leq|(x-x_0)(yz)|+|x_0(yz-y_0z_0)|##
##\leq|(x-x_0)(yz)|+|x_0(yz-y_0z_0+yz_0-yz_0)| \leq |yz(x-x_0)|+|x_0[y(z-z_0)+z_0(y-y_0)]|##
## \leq |yz(x-x_0)|+|x_0y(z-z_0)|+|x_0z_0(y-y_0)|##
and by choosing ##C=max\{|yz|,|x_0y|,|x_0z_0|\}## I have my inequality.
I'm not sure I can do this, though. Are all the passages logic?
Thank you in advance :)
 
Physics news on Phys.org
Felafel said:
and by choosing ##C=max\{|yz|,|x_0y|,|x_0z_0|\}## I have my inequality.
I didn't check the rest, but this part won't work. The constant needs to be independent of ##x##,##y##, and ##z##. But yours depends on ##y## and ##z##.

Also, which norm are you using for ##\|(x,y,z) - (x_0,y_0,z_0)\|##? From your work, it would appear that you are using ##\| (a,b,c)\| = |a| + |b| + |c|## (the 1-norm), but unless otherwise specified, in ##R^{n}## it's usual to assume that the 2-norm is intended: ##\|(a,b,c)\| = \sqrt{a^2 + b^2 + c^2}##.
 
I'm using the 1-norm
any suggestions on how to proceed then?
 
Here is a different approach. Start in one dimension with h(x) = x. This is clearly Lipschitz continuous with C = 1.

Now do an induction step. Suppose we assume that g(x,y) = xy is Lip continuous. Does it follow that f(x,y,z) = xyz is Lip continuous?

You can certainly write f(x,y,z) = g(x,y)h(z).

Can you finish it from here?
 
Here's my attempt:
assuming g(x,y)=xy Lipschitz
then
g(x,y)*h(z) is the product of two Lipschitz functions, which is Lipschitz itself. In particular,
f(x,y,z)=g(x,y)*h(z)=##C \cdot |xy - x_0y_0|\cdot1\cdot|z-z_0|## but ##|xy-x_0y_0|## is equal to ##(x-x_0)(y-y_0)## with scalar product (i'm not sure this passage actually works, but i don't know how to rewrite ##|xy-x_0y_0|## in an "useful" manner, such as ##|x-x_0| |y-y_0|##, so:
##f(x,y,z)=|z\cdot xy|\leq 1\cdot |z-z_0| \cdot C (|x-x_0|\cdot|y-y_0|)##
anf therefore f is lipschitz with constant C.
then by induction g is lipschitz too, as assumed.
 
Felafel said:
Here's my attempt:
assuming g(x,y)=xy Lipschitz
then
g(x,y)*h(z) is the product of two Lipschitz functions, which is Lipschitz itself.

Stop right there. You've just said g(x,y)h(z) is Lipschitz continuous, so f(x,y,z) = xyz = g(x,y)h(z) is Lipschitz continuous. You don't have to prove another thing ; if it is Lip continuous, it is continuous.
 
  • Like
Likes   Reactions: 1 person

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
512