Someone2841
- 43
- 6
From Pugh's "Real Mathematical Analysis" Chapter 1
In the case of n=1, ##\delta = \epsilon## satisfies the condition, i.e. ##|y-x| < \delta = \epsilon \implies |y - x| < \epsilon##.
In the case of n=2, it needs to be shown that ##|y-x| < \delta \implies |y-x||y+x| < \epsilon##
1. ##|y+x| < 1## implies that ##|y-x||y+x| < |y-x| < \delta##. If ##\delta = \epsilon##, then the condition is met.
2. ##|y+x| \geq 1## implies that ##|y-x| \leq |y-x||y+x| < \delta \text{ } |y+x|##
[Note: This is only the first part of the problem; I do intend to solve the general case with induction.]
Thanks!
13. Given ##y \in \mathbb{R}, n \in \mathbb{N}, \text{ and } \epsilon > 0##, show that for some ##\delta > 0, |y-x| < \delta \text{ then } |y^n - x^n| < \epsilon##
In the case of n=1, ##\delta = \epsilon## satisfies the condition, i.e. ##|y-x| < \delta = \epsilon \implies |y - x| < \epsilon##.
In the case of n=2, it needs to be shown that ##|y-x| < \delta \implies |y-x||y+x| < \epsilon##
1. ##|y+x| < 1## implies that ##|y-x||y+x| < |y-x| < \delta##. If ##\delta = \epsilon##, then the condition is met.
2. ##|y+x| \geq 1## implies that ##|y-x| \leq |y-x||y+x| < \delta \text{ } |y+x|##
Here's my question: Is it valid to set ##\delta## to ##\frac{\epsilon}{|y+x|}##? In the case that ##|y+x| \geq 1##, there is no risk of division by zero or assigning ##\delta## to a negative value, so ##\delta## would exist and be positive. If so, then the condition is met.
[Note: This is only the first part of the problem; I do intend to solve the general case with induction.]
Thanks!