jdwood983
- 382
- 0
Homework Statement
Show that, for m>0,
<br /> \int_{0}^{\infty}dx\frac{\cos[mx]}{\left(x^{2}+1\right)^{2}}=\frac{\pi}{4}\left(1+m\right)\exp[-m]<br />
Homework Equations
Residue theorem:
<br /> \oint_Cdz\frac{\cos[mz]}{(z^2+1)^2}=\pi i\mathrm{Res}\left[\frac{\cos[mz]}{(z^2+1)^2},\,i\right]<br />
The Attempt at a Solution
<br /> \mathrm{Res}\left[\frac{\cos[mz]}{\left(z+i\right)^{2}\left(z-i\right)^{2}},\, i\right]=\frac{d}{dz}\left((z-i)^{2}\frac{\exp[imz]}{(z+i)^{2}(z-i)^{2}}\right)_{z=i}<br />
<br /> =\frac{d}{dz}\left(\frac{\exp[imz]}{(z+i)^{2}}\right)_{z=i}<br />
<br /> =\left.\frac{im\exp[imz]}{(z+i)^{2}}-\frac{2\exp[imz]}{(z+i)^{3}}\right|_{z=i}<br />
<br /> =\frac{im\exp[-m]}{4i^{2}}-\frac{2\exp[-m]}{8i^{3}}<br />
<br /> =\frac{m\exp[-m]}{4i}+\frac{\exp[-m]}{4i}\\&=\frac{1}{4i}(m+1)\exp[-m]<br />
<br /> \therefore\int_0^\infty dx\frac{\cos[mx]}{(x^2+1)^2}=\frac{\pi}{4}(m+1)\exp[-m]<br />
I get the answer no problem, but I'm not sure about is why this is for m>0 only. If I let m<0, I get (by the same/similar arguments and mathematics as above)
<br /> \int_0^\infty dx\frac{\cos[mx]}{(x^2+1)^2}=\frac{\pi}{4}(1-m)\exp[m]<br />
And I'm not sure why this wouldn't be allowed? Any suggestions of where to look?
Last edited: