Contra-variant and Co-variant vectors

  • Thread starter Thread starter exmarine
  • Start date Start date
  • Tags Tags
    Vectors
exmarine
Messages
241
Reaction score
11
This should be a simple question for you guys. I am trying to construct trivial examples of contra-variant and co-variant vectors. Suppose I have a 2D Cartesian system with equal units out the x and y axes, and a vector A with components (2,1). Suppose my prime 2D Cartesian system is parallel, but the units along the x’ axis are twice as long as those in the un-primed (and y’) axes. I think my A’ vector has components (1,1). Is that correct? Is that then a contra-variant vector? What is an example of a co-variant vector?
Thanks.
 
Physics news on Phys.org
exmarine said:
the units along the x’ axis are twice as long as those in the un-primed (and y’) axes.
If the units are twice as long, then the value of the x' coordinate is half as great: x' = x/2. Then

∂x'/∂x = 1/2 and ∂x/∂x' = 2

If the vector A is contravariant, then Ax' = ∂x'/∂x Ax = 1

If the vector A is covariant, then Ax' = ∂x/∂x' Ax = 4
 
Ok thanks.

Then follow-on question: What could a covariant vector ever be used for? What could it represent? (I am reading GRT textbooks, so I'll eventually run into it I guess.)
 
bv
exmarine said:
Then follow-on question: What could a covariant vector ever be used for? What could it represent? (I am reading GRT textbooks, so I'll eventually run into it I guess.)

Trivial example:

If you transform from a coordinate system in which distance is measured in meters to one in which it is is measured in kilometers (##x'=\frac{x}{1000}##) the ##x## coordinate of a contravariant upper-index vector such as velocity will be smaller by a factor of 1000; If an object's velocity was 1000 m/sec in the old coordinate system it will be 1 km/sec in the new one.

A covariant quantity would be something like altitude change per meter, which transforms the other way. If the altitude changes by 1 cm per meter of horizontal distance you cover, it will change by 1000 cm per kilometer after the transformation. From this, you might correctly conclude that the gradient is a example of a useful covector.

It's worth the exercise of writing down the metric tensor for two-dimensional cartesian space (it's just the 2x2 identity matrix) and then applying the tensor coordinate transformation rule for this trivial coordinate transform, just to see how ##g_{ij}## differs from ##g^{ij}## after the transform.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top