I Vanishing of Contraction with Metric Tensor

  • I
  • Thread starter Thread starter kent davidge
  • Start date Start date
  • Tags Tags
    Contraction Metric
kent davidge
Messages
931
Reaction score
56
This question is probably silly, but suppose I have a contraction of the form ##g_{\mu \nu} C^{\mu \nu} = 0## where ##C^{\mu \nu}## is a tensor* and ##g_{\mu \nu}## is the metric tensor. Can I say that it must vanish for any ##g_{\mu \nu}##, and since in the most general case all ##g_{\mu \nu}## are non zero, then necessarely ##C^{\mu \nu} = 0##?

*##C^{\mu \nu}## is a symmetric tensor.
 
Last edited:
Physics news on Phys.org
Since ##g_{\mu\nu}## is symmetric, ##C^{\mu\nu}## being antisymmetric is enough, I think.
 
  • Like
Likes kent davidge
Ibix said:
Since ##g_{\mu\nu}## is symmetric, ##C^{\mu\nu}## being antisymmetric is enough, I think.
Yes. However it turns out that my ##C^{\mu \nu}## is also symmetric (unfortunately!)
 
kent davidge said:
This question is probably silly, but suppose I have a contraction of the form ##g_{\mu \nu} C^{\mu \nu} = 0## where ##C^{\mu \nu}## is a tensor* and ##g_{\mu \nu}## is the metric tensor. Can I say that it must vanish for any ##g_{\mu \nu}##, and since in the most general case all ##g_{\mu \nu}## are non zero, then necessarely ##C^{\mu \nu} = 0##?

*##C^{\mu \nu}## is a symmetric tensor.
No. Counterexample: ##C^{\mu \nu} = K^\mu K^\nu ## where ##\mathbf{K}## is any (non-zero) null vector.
 
  • Like
Likes Ibix and kent davidge
kent davidge said:
This question is probably silly, but suppose I have a contraction of the form ##g_{\mu \nu} C^{\mu \nu} = 0## where ##C^{\mu \nu}## is a tensor* and ##g_{\mu \nu}## is the metric tensor. Can I say that it must vanish for any ##g_{\mu \nu}##, and since in the most general case all ##g_{\mu \nu}## are non zero, then necessarely ##C^{\mu \nu} = 0##?

*##C^{\mu \nu}## is a symmetric tensor.

From a Linear Algebra point of view, you take the trace. A traceless matrix is not necessarily the zero matrix.
Also, do the counting: ##g_{\mu \nu} C^{\mu \nu} = 0## puts one constraint on your tensor ##C^{\mu \nu}##, while in D dimensions a general tensor ##C^{\mu \nu}## has ##D^2## components. The condition that ##C^{\mu \nu} = C^{[\mu \nu]}##, i.e. ##C^{\mu \nu}## is antisymmetric, means ##C^{(\mu \nu)} = 0##, which are ##\frac{1}{2}D(D+1)## constraints. So ##g_{\mu \nu} C^{\mu \nu} = 0## cannot imply that ##C^{(\mu \nu)} = 0##. Of course, ##C^{(\mu \nu)} = 0## does imply that ##g_{\mu \nu} C^{\mu \nu} = g_{\mu \nu} C^{(\mu \nu)} = 0##; you get a linear combination of zeroes.

So, to answer your question: no, most definitely not.
 
  • Like
Likes kent davidge
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top