Saitama
- 4,244
- 93
Homework Statement
Let ##x_0=2\cos(\pi/6)## and ##x_n=\sqrt{2+x_{n-1}}##, n=1,2,3,...
Find $$\lim_{n \rightarrow \infty} 2^{n+1}\cdot \sqrt{2-x_n}$$
Homework Equations
The Attempt at a Solution
I found ##\displaystyle x_n=2\cos\left(\frac{\pi}{6(n+1)}\right)##
$$\Rightarrow \sqrt{2-x_n}=2\sin\left(\frac{\pi}{12(n+1)}\right)$$
The limit to be evaluated is
$$\lim_{n \rightarrow \infty} 2\cdot 2^{n+1}\cdot \sin\left(\frac{\pi}{12(n+1)}\right)$$
Evaluating it results in infinity but the given answer is ##\pi/3##.

Any help is appreciated. Thanks!