Convergence of a series given in non-closed form

Click For Summary
SUMMARY

The series defined as a_n = \frac{1 \cdot 4 \cdot 7 \cdots (3n - 2)}{3 \cdot 5 \cdots (2n + 1)} is determined to be divergent. The analysis shows that for sufficiently large values of n, specifically for n > 2, the terms of the series are increasing, leading to the conclusion that lim_{n→∞} a_n = ∞. Therefore, by the Test for Divergence, the series does not converge.

PREREQUISITES
  • Understanding of series convergence tests, particularly the Test for Divergence.
  • Familiarity with factorial notation and its properties.
  • Knowledge of sequences and their limits.
  • Basic algebraic manipulation skills for handling inequalities.
NEXT STEPS
  • Study the Ratio Test for series convergence.
  • Learn about the properties of factorials and their applications in series.
  • Explore the concept of asymptotic behavior of sequences.
  • Investigate other convergence tests such as the Root Test and Comparison Test.
USEFUL FOR

Mathematics students, educators, and anyone involved in advanced calculus or analysis who seeks to understand series convergence and divergence.

Entertainment Unit
Messages
16
Reaction score
1

Homework Statement


Determine whether the given series is absolutely convergent, conditionally convergent, or divergent.

##\frac{1}{3} + \frac{1 \cdot 4}{3 \cdot 5} + \frac{1 \cdot 4 \cdot 7}{3 \cdot 5 \cdot 7} + \frac{1 \cdot 4 \cdot 7 \cdot 10}{3 \cdot 5 \cdot 7 \cdot 9} + \ldots + \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)}{3 \cdot 5 \cdot 7 \cdot \ldots \cdot (2n + 1)} + \ldots##

Homework Equations


None that I'm aware.

The Attempt at a Solution


Before I can apply any of the convergence tests, I need a closed-form expression.

##a_n = \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)}{3 \cdot 5 \cdot 7 \cdot \ldots \cdot (2n + 1)}##

##= \frac{2 \cdot 1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)}{2 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot (2n + 1)}##

##= \frac{2 \cdot 1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)(4 \cdot 6 \cdot \ldots \cdot 2n)}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot \ldots \cdot 2n(2n + 1)}##

##= \frac{2 \cdot 1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)2(2 \cdot 3 \cdot \ldots \cdot n)}{(2n + 1)!}##

##= \frac{2 \cdot 1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)2n!}{(2n + 1)!}##

##= \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)4n!}{(2n + 1)!}##

and then I'm not sure where to go.
 
Physics news on Phys.org
You don't need to do much calculation in this. Just work out whether the terms are ultimately increasing or decreasing. If they are not decreasing then the series must be divergent, since they are all positive. To prove that, just find the smallest term, and use the fact that all terms are at least as great as that.
 
  • Like
Likes   Reactions: Entertainment Unit and SammyS
Thanks, here's what wound up with:

It is given that ##a_n = \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)}{3 \cdot 5 \cdot 7 \cdot \ldots \cdot (2n + 1)}##

##\implies a_{n + 1} = \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)(3n + 1)}{3 \cdot 5 \cdot 7 \cdot \ldots \cdot (2n + 1)(2n + 3)}##

Suppose ##a_n \lt a_{n + 1}##

##\frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)}{3 \cdot 5 \cdot 7 \cdot \ldots \cdot (2n + 1)} \lt \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)(3n + 1)}{3 \cdot 5 \cdot 7 \cdot \ldots \cdot (2n + 1)(2n + 3)}##

##1 \lt \frac{3n+1}{2n + 3}##

##n \gt 2##

which means our supposition that ##a_n \lt a_{n+1}## is correct for ##n > N = 2 \implies \lim_{n\to\infty} a_n = \infty \implies## the given series is divergent by the Test For Divergence.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
3
Views
3K
Replies
5
Views
3K
Replies
3
Views
2K