DreamWeaver
- 297
- 0
For $$a\, ,b\in\mathbb{R}\,$$ and $$b>|a|\,$$ show that:
$$\int_0^{\infty}\frac{\sinh ax}{\sinh bx}\, dx = \frac{\pi}{2b}\tan\frac{\pi a}{2b}$$
$$\int_0^{\infty}\frac{\sinh ax}{\sinh bx}\, dx = \frac{\pi}{2b}\tan\frac{\pi a}{2b}$$