MHB Converging Geometric Series with Negative Values?

AI Thread Summary
In a decreasing geometric series, the ratio q must be between 0 and 1 for the series to converge when all terms are positive. If the terms are not all positive, the series can either consist entirely of negative values or alternate in sign. In the case of all negative terms, the negative can be factored into the first term, while alternating series can be expressed with a negative ratio. The convergence condition for a geometric series is that the ratio must satisfy -1 < r < 1. Thus, the behavior of the series changes significantly based on the sign and value of the ratio.
Lancelot1
Messages
26
Reaction score
0
Hiya everyone,

Alright ?

I have a simple theoretical question. In a decreasing geometric series, is it true to say that the ratio q has to be 0<q<1, assuming that all members of the series are positive ? What if they weren't all positive ?

Thank you in advance !
 
Mathematics news on Phys.org
A "geometric series" is of the form \sum ar^n= a+ ar+ ar^2+ ar^3+ \cdot\cdot\cdot= a(1+ r+ r^2+ r^3+ \cdot\cdot\cdot) so, yes, if the series is decreasing and positive then r must be less than 1. If r> 1 then 1&lt; r&lt; r^2&lt; r^3&lt; \cdot\cdot\cdot. If r< 1 then 1&gt; r&gt; r^2&gt; r^3&gt; \cdot\cdot\cdot. Of course, in the first case, r> 1, the series does not converge.

If they are not all positive then either they are all negative and we can take the negative into the "a" term so that \sum at^n= a\sum r^n has a negative number times the same sum of ar^n or they are alternating, \sum a(-r)^n= a\sum (-1)^n r^n. The geometric series \sum ar^n converges if and only if -1&lt; r&lt; 1.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
3
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
6
Views
3K
Replies
14
Views
2K
Back
Top