frensel
- 20
- 0
Homework Statement
How to convert
\tan(x)\sin(\frac{x}{2})+\cos(\frac{x}{2})
to
\frac{\tan(x)}{\sqrt{2(1-\cos(x))}}
Homework Equations
The Attempt at a Solution
I can convert it to this form: \frac{\cos(\frac{x}{2})}{\cos(x)}
\tan(x)\sin(\frac{x}{2})+\cos(\frac{x}{2})
=\frac{\sin(x)}{\cos(x)}\sin(\frac{x}{2})+ \cos(\frac{x}{2})
=\frac{1}{\cos(x)}\left(\sin(x)\sin(\frac{x}{2})+ \cos(x)\cos(\frac{x}{2})\right)
using angle sum and difference identities, we get
\left(\sin(x)\sin(\frac{x}{2})+ \cos(x)\cos(\frac{x}{2})\right) = \cos(x - \frac{x}{2}) = \cos(\frac{x}{2})
therefore, we have
\tan(x)\sin(\frac{x}{2})+\cos(\frac{x}{2}) = \frac{\cos(\frac{x}{2})}{\cos(x)}