Convolution of two probability distributions using FFT

jamie_m
Messages
14
Reaction score
0
I've been trying to code an algorithm to compute the convolution of two probability distributions. using the FFT. This relies on the "convolution theorem":

(p*q)[z] = FFT^{-1}(FFT(p) \cdot FFT(q))

However, when I test it using the distributions

p={0.1, 0.2, 0.3, 0.4}
q={0.4, 0.3, 0.2, 0.1}

the result that's output - {0.24, 0.22, 0.24, 0.3} - doesn't correspond to any definition or generalised definition of convolution that I can find.

(I'm fairly sure that one of the 0.24s, for instance, results from p[0]q[2] + p[1]q[1] + p[2]q[0] + p[3]q[3] being computed and divided by n)

Can someone well-versed in FFTs (and/or convolutions) shed any light on what might be going on? I enclose the source code, which uses C++ and the FFTW package, below:

Code:
void convolution_of_two_probability_distributions_with_fft(long double* p, long double* q, long double* p_star_q, unsigned long int n)
{
	fftwl_plan fpcp;
	fftwl_plan fpcq;
	fftwl_plan f_reverse;
	unsigned long int ulx;

	fftwl_complex* transformed_p = (fftwl_complex*)fftwl_malloc(sizeof(fftwl_complex) * n);
	fftwl_complex* transformed_q = (fftwl_complex*)fftwl_malloc(sizeof(fftwl_complex) * n);
	fftwl_complex* transformed_p_dot_transformed_q = (fftwl_complex*)fftwl_malloc(sizeof(fftwl_complex) * n);

	fpcp = fftwl_plan_dft_r2c_1d(n, p, transformed_p, FFTW_ESTIMATE);
	fpcq = fftwl_plan_dft_r2c_1d(n, q, transformed_q, FFTW_ESTIMATE);
	f_reverse = fftwl_plan_dft_c2r_1d(n, transformed_p_dot_transformed_q, p_star_q, FFTW_ESTIMATE);

	fftwl_execute(fpcp);
	fftwl_execute(fpcq);

	for (unsigned long int ulx=0; ulx < n; ulx++)
	{
		//transformed_p_dot_transformed_q[ulx] = transformed_p[ulx] * transformed_q[ulx];
		//There's no overloaded * for fftwl_complex.
		transformed_p_dot_transformed_q[ulx][0] = (transformed_p[ulx][0] * transformed_q[ulx][0]) - (transformed_p[ulx][1] * transformed_q[ulx][1]);
		transformed_p_dot_transformed_q[ulx][1] = (transformed_p[ulx][0] * transformed_q[ulx][1]) + (transformed_p[ulx][1] * transformed_q[ulx][0]);
	}

	fftwl_execute(f_reverse);

	for (ulx=0; ulx < n; ulx++)
	{
		p_star_q[ulx] /= n;
	}

	fftwl_destroy_plan(fpcp);
	fftwl_destroy_plan(fpcq);
	fftwl_destroy_plan(f_reverse);

	fftwl_free(transformed_p);
	fftwl_free(transformed_q);
	fftwl_free(transformed_p_dot_transformed_q);
}
 
Last edited:
Mathematics news on Phys.org
Perhaps it's "circular convolution"

(p*q)_n = \sum_{m=0}^3 { p_m q_{n-m} }

e.g.
(p*q)_0 = \sum_{m = 0}^3 {p_m} q_{0-m}
= p_0 q_0 + p_1 q_{-1} + p_2 q_{-2} + p_3 q_{-3}

Where we regard q_{-1} = q_3 , q_{-2}= q_2 etc

= (0.1)(0.4) + (0.2)(0.1) + (0.3)(0.2) + (0.4)(0.3) = 0.24
 
Stephen Tashi said:
Perhaps it's "circular convolution"

(p*q)_n = \sum_{m=0}^3 { p_m q_{n-m} }

I think you're right - this is consistent with the existing results and with another pair of distributions I've tested it with. Thanks for that!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top